Boosting CO2 Electroreduction to C2H4 via Unconventional Hybridization: High-Order Ce4+ 4f and O 2p Interaction in Ce-Cu2O for Stabilizing Cu+

Boosting(机器学习) 材料科学 订单(交换) 物理 计算机科学 财务 机器学习 经济
作者
Yanfei Sun,Jiangzhou Xie,Zhenzhen Fu,Huiying Zhang,Yebo Yao,Yixiang Zhou,Xiaoxuan Wang,Shiyu Wang,Xueying Gao,Zheng Tang,Shuyuan Li,Xiaojun Wang,Kaiqi Nie,Zhiyu Yang,Yi‐Ming Yan
出处
期刊:ACS Nano [American Chemical Society]
卷期号:17 (14): 13974-13984 被引量:47
标识
DOI:10.1021/acsnano.3c03952
摘要

Efficient conversion of carbon dioxide (CO2) into value-added materials and feedstocks, powered by renewable electricity, presents a promising strategy to reduce greenhouse gas emissions and close the anthropogenic carbon loop. Recently, there has been intense interest in Cu2O-based catalysts for the CO2 reduction reaction (CO2RR), owing to their capabilities in enhancing C–C coupling. However, the electrochemical instability of Cu+ in Cu2O leads to its inevitable reduction to Cu0, resulting in poor selectivity for C2+ products. Herein, we propose an unconventional and feasible strategy for stabilizing Cu+ through the construction of a Ce4+ 4f–O 2p–Cu+ 3d network structure in Ce-Cu2O. Experimental results and theoretical calculations confirm that the unconventional orbital hybridization near Ef based on the high-order Ce4+ 4f and 2p can more effectively inhibit the leaching of lattice oxygen, thereby stabilizing Cu+ in Ce-Cu2O, compared with traditional d–p hybridization. Compared to pure Cu2O, the Ce-Cu2O catalyst increased the ratio of C2H4/CO by 1.69-fold during the CO2RR at −1.3 V. Furthermore, in situ and ex situ spectroscopic techniques were utilized to track the oxidation valency of copper under CO2RR conditions with time resolution, identifying the well-maintained Cu+ species in the Ce-Cu2O catalyst. This work not only presents an avenue to CO2RR catalyst design involving the high-order 4f and 2p orbital hybridization but also provides deep insights into the metal-oxidation-state-dependent selectivity of catalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
博修发布了新的文献求助10
3秒前
罗亚亚完成签到,获得积分10
4秒前
xiaodaiduyan发布了新的文献求助30
5秒前
研友_nVqwxL发布了新的文献求助10
6秒前
CipherSage应助落晨采纳,获得10
6秒前
8秒前
汉堡包应助记得刷牙采纳,获得10
8秒前
Jc完成签到 ,获得积分10
9秒前
早点毕业完成签到 ,获得积分10
9秒前
彩色谷蕊完成签到,获得积分10
10秒前
研友_VZG7GZ应助sss采纳,获得10
11秒前
今天要学习完成签到 ,获得积分10
11秒前
12秒前
犹豫的战斗机完成签到,获得积分10
13秒前
tutulunzi完成签到,获得积分10
14秒前
强砸完成签到,获得积分10
14秒前
king完成签到,获得积分10
16秒前
16秒前
卡司发布了新的文献求助10
16秒前
17秒前
sissiarno完成签到,获得积分0
18秒前
18秒前
爆米花应助鞑靼采纳,获得10
18秒前
烟花应助研友_nVqwxL采纳,获得10
18秒前
健康的网络完成签到,获得积分10
19秒前
NexusExplorer应助霍山柳采纳,获得10
20秒前
ab发布了新的文献求助10
20秒前
聪慧的冷风完成签到,获得积分10
20秒前
21秒前
sss发布了新的文献求助10
22秒前
22秒前
22秒前
23秒前
AledDak发布了新的文献求助10
23秒前
木仔仔发布了新的文献求助10
24秒前
乐乐应助Ricochet采纳,获得10
26秒前
文文完成签到 ,获得积分10
26秒前
眼睛大的恶天应助丽莉采纳,获得10
27秒前
白华苍松发布了新的文献求助10
27秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299813
求助须知:如何正确求助?哪些是违规求助? 2934662
关于积分的说明 8470165
捐赠科研通 2608229
什么是DOI,文献DOI怎么找? 1424075
科研通“疑难数据库(出版商)”最低求助积分说明 661827
邀请新用户注册赠送积分活动 645574