Enhanced Copolymer Characterization for Polyethers Using Gel Permeation Chromatography Combined with Artificial Neural Networks

共聚物 凝胶渗透色谱法 化学 环氧丙烷 摩尔质量分布 环氧乙烷 大小排阻色谱法 解吸 聚合物 质谱法 质量分数 基质辅助激光解吸/电离 分析化学(期刊) 色谱法 有机化学 吸附
作者
Tibor Nagy,Georg Roth,Máté Benedek,Ákos Kuki,István Timári,Miklós Zsuga,Sándor Kéki
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:95 (28): 10504-10511 被引量:2
标识
DOI:10.1021/acs.analchem.2c02913
摘要

Gel permeation chromatography (GPC) is a generally applied method for the mass analysis of various polymers and copolymers, but it inherently fails to provide additional important information such as the composition of copolymers. However, we will show that GPC measurements using different solvents can yield not just the correct molecular weight but the composition of the copolymer. Accordingly, artificial neural networks (ANNs) have been developed to process the data of GPC measurements and determine the molecular weight and the chemical composition of the copolymers. The target values of the ANNs were obtained by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and nuclear magnetic resonance (NMR) spectroscopy. Our GPC–ANN method is demonstrated by the analysis of various poloxamers, i.e., poly(ethylene oxide) (PEO)–poly(propylene oxide) (PPO) block copolymers. Two ANNs were constructed. The first one (ANN_1) works in a wider mass range (from 900 to 12,500 dalton), while the second one (ANN_2) produces more output values. ANN_2 can thus predict seven characteristic copolymer parameters, namely, two average molecular weights, the average weight fraction of the EO unit, and four average numbers of the repeat units. The correlation between the experimentally obtained outputs and the predicted ones is high (r > 0.98). The accuracy of the ANNs is very convincing, and both ANNs predict the number-average molecular weight (Mn) with an accuracy below 5%. Furthermore, this work is the first step for creating an open database and applications extending the use of the GPC–ANN method for the analysis of copolymers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于彦祖应助螺丝老人采纳,获得30
刚刚
1秒前
qq发布了新的文献求助10
1秒前
YI应助梦寻采纳,获得10
1秒前
1秒前
graham1101完成签到,获得积分10
2秒前
yyytr完成签到,获得积分10
2秒前
顾矜应助始于足下采纳,获得10
3秒前
GUIGUI完成签到,获得积分10
3秒前
ljj发布了新的文献求助10
3秒前
kj关闭了kj文献求助
4秒前
wangluyuan完成签到,获得积分20
4秒前
jinke发布了新的文献求助10
4秒前
自由的厉完成签到 ,获得积分10
4秒前
热心市民小红花应助kyt采纳,获得10
5秒前
lullu关注了科研通微信公众号
5秒前
Jasper应助WZJ采纳,获得10
5秒前
Owen应助漂泊1991采纳,获得10
6秒前
wangluyuan发布了新的文献求助10
7秒前
虎虎虎完成签到,获得积分10
7秒前
房天川发布了新的文献求助80
7秒前
8秒前
qiaoxin完成签到,获得积分20
8秒前
烟花应助weeee采纳,获得10
8秒前
科研垃圾完成签到,获得积分10
9秒前
9秒前
ljj完成签到,获得积分10
9秒前
初昀杭完成签到 ,获得积分10
10秒前
zigzag发布了新的文献求助10
11秒前
11秒前
Surpass完成签到,获得积分10
12秒前
12秒前
12秒前
13秒前
8R60d8应助斑马采纳,获得10
13秒前
13秒前
CipherSage应助水果大叔采纳,获得10
13秒前
暖暖的小太阳完成签到,获得积分10
13秒前
ellen完成签到,获得积分10
14秒前
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958608
求助须知:如何正确求助?哪些是违规求助? 3504895
关于积分的说明 11120971
捐赠科研通 3236246
什么是DOI,文献DOI怎么找? 1788726
邀请新用户注册赠送积分活动 871297
科研通“疑难数据库(出版商)”最低求助积分说明 802680