Enhanced Copolymer Characterization for Polyethers Using Gel Permeation Chromatography Combined with Artificial Neural Networks

共聚物 凝胶渗透色谱法 化学 环氧丙烷 摩尔质量分布 环氧乙烷 大小排阻色谱法 解吸 聚合物 质谱法 质量分数 基质辅助激光解吸/电离 分析化学(期刊) 色谱法 有机化学 吸附
作者
Tibor Nagy,Gergő Róth,Máté Benedek,Ákos Kuki,István Timári,Miklós Zsuga,Sándor Kéki
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:95 (28): 10504-10511 被引量:6
标识
DOI:10.1021/acs.analchem.2c02913
摘要

Gel permeation chromatography (GPC) is a generally applied method for the mass analysis of various polymers and copolymers, but it inherently fails to provide additional important information such as the composition of copolymers. However, we will show that GPC measurements using different solvents can yield not just the correct molecular weight but the composition of the copolymer. Accordingly, artificial neural networks (ANNs) have been developed to process the data of GPC measurements and determine the molecular weight and the chemical composition of the copolymers. The target values of the ANNs were obtained by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and nuclear magnetic resonance (NMR) spectroscopy. Our GPC–ANN method is demonstrated by the analysis of various poloxamers, i.e., poly(ethylene oxide) (PEO)–poly(propylene oxide) (PPO) block copolymers. Two ANNs were constructed. The first one (ANN_1) works in a wider mass range (from 900 to 12,500 dalton), while the second one (ANN_2) produces more output values. ANN_2 can thus predict seven characteristic copolymer parameters, namely, two average molecular weights, the average weight fraction of the EO unit, and four average numbers of the repeat units. The correlation between the experimentally obtained outputs and the predicted ones is high (r > 0.98). The accuracy of the ANNs is very convincing, and both ANNs predict the number-average molecular weight (Mn) with an accuracy below 5%. Furthermore, this work is the first step for creating an open database and applications extending the use of the GPC–ANN method for the analysis of copolymers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助caoruyuan采纳,获得10
刚刚
乔雪完成签到,获得积分10
刚刚
ccm应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
1秒前
YsGao应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
andou应助科研通管家采纳,获得10
1秒前
ccm应助科研通管家采纳,获得10
1秒前
Dali应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
PJJJ发布了新的文献求助10
1秒前
2秒前
高高的平蓝应助helitrope采纳,获得100
2秒前
甘乐完成签到 ,获得积分10
4秒前
科研通AI6应助rei402采纳,获得10
5秒前
孙博发布了新的文献求助10
6秒前
酶切完成签到,获得积分10
6秒前
6秒前
Owen应助血绣采纳,获得10
8秒前
10秒前
10秒前
Orange应助枕星采纳,获得10
10秒前
li完成签到,获得积分10
11秒前
CodeCraft应助积极擎汉采纳,获得10
11秒前
12秒前
费劲来到这的Rua完成签到,获得积分10
12秒前
曼珠沙华发布了新的文献求助10
13秒前
worrysyx完成签到,获得积分10
15秒前
huihui发布了新的文献求助10
15秒前
星辰大海应助sasa采纳,获得10
16秒前
18秒前
18秒前
19秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588492
求助须知:如何正确求助?哪些是违规求助? 4671582
关于积分的说明 14787884
捐赠科研通 4625454
什么是DOI,文献DOI怎么找? 2531836
邀请新用户注册赠送积分活动 1500428
关于科研通互助平台的介绍 1468314