凝聚态物理
超晶格
铁电性
电场
自旋电子学
材料科学
相变
拓扑绝缘体
拉希巴效应
电介质
极化(电化学)
钙钛矿(结构)
极化密度
拓扑序
物理
拓扑(电路)
铁磁性
磁场
结晶学
光电子学
量子力学
磁化
化学
数学
物理化学
组合数学
量子
作者
Xinyu Wang,Li Xu,Hao Tian,H. Sang,Jian Zhou,Lan Chen,Hong Jian Zhao,Di Wu,Haijun Zhang,L. Bellaïche,Junming Liu,Yurong Yang
出处
期刊:Physical review
日期:2023-07-11
卷期号:108 (4)
标识
DOI:10.1103/physrevb.108.045114
摘要
We introduce superlattices made of ferroelectric halide perovskites as a class of functional materials possessing large Rashba effect and phase transition from normal insulator (NI) to topological insulator (TI) induced by an electric field. Using first-principles methods, in $\mathrm{CsPb}{\mathrm{I}}_{3}/\mathrm{CsSi}{\mathrm{I}}_{3}$ and $\mathrm{CsSn}{\mathrm{I}}_{3}/\mathrm{CsSi}{\mathrm{I}}_{3}$ superlattices, we found a nonmonotonic Rashba parameter with respect to the magnitude of polarization and large maximal Rashba effect at a critical polarization, where the phase transition from NI to TI occurs when changing the polarization. This phase transition and the large maximal Rashba effect are related to band-gap engineering under an electric field. In contrast to traditional nonpolar TIs, in these ferroelectric TIs, the energy level of the Dirac point and the spin texture of surface states are largely tunable by changing polarization or strain. Our results thus highlight the interplay among ferroelectricity, Rashba effect, and topological order in a single material, which is promising toward electronic and spintronic applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI