已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

3D bioprinting for organ and organoid models and disease modeling

3D生物打印 计算机科学 药物发现 过程(计算) 药物开发 可扩展性 三维细胞培养 生化工程 药品 生物信息学 医学 工程类 组织工程 生物医学工程 生物 药理学 遗传学 数据库 细胞 操作系统
作者
Amanda Castro Juraski,Sonali Sharma,Sydney Sparanese,Victor A. da Silva,Julie Wong,Zachary Laksman,Ryan Flannigan,Leili Rohani,Stephanie M. Willerth
出处
期刊:Expert Opinion on Drug Discovery [Informa]
卷期号:18 (9): 1043-1059 被引量:6
标识
DOI:10.1080/17460441.2023.2234280
摘要

ABSTRACTABSTRACTIntroduction 3D printing, a versatile additive manufacturing technique, has diverse applications ranging from transportation, rapid prototyping, clean energy, and medical devices.Areas covered The authors focus on how 3D printing technology can enhance the drug discovery process through automating tissue production that enables high-throughput screening of potential drug candidates. They also discuss how the 3D bioprinting process works and what considerations to address when using this technology to generate cell laden constructs for drug screening as well as the outputs from such assays necessary for determining the efficacy of potential drug candidates. They focus on how bioprinting how has been used to generate cardiac, neural, and testis tissue models, focusing on bio-printed 3D organoids.Expert opinion The next generation of 3D bioprinted organ model holds great promises for the field of medicine. In terms of drug discovery, the incorporation of smart cell culture systems and biosensors into 3D bioprinted models could provide highly detailed and functional organ models for drug screening. By addressing current challenges of vascularization, electrophysiological control, and scalability, researchers can obtain more reliable and accurate data for drug development, reducing the risk of drug failures during clinical trials.KEYWORDS: Organoidsbioprintingbioinksstem cellscardiacneural Article highlights 3D bioprinting can control the physical and biochemical properties of the niche-microenvironment when generating cell-laden constructs. This fine-tuning enables researchers to study drug response in mature cells and biobank expandable cells.These tissue models replicate their properties of their in vivo counterparts and can serve as a useful tool for drug screening as their use for applications in neural, cardiac, and testis models as reviewed.Cell viability and function depend on oxygen penetration – making vasculature an important consideration when generating 3D bioprinted constructs. Researchers have generated perfusable microvascular networks using sacrificial materials and microfluidics or directly printed vascular channels using bioprinting techniques.Stretchable and viscoelastic biomaterials can modulate physiological processes such as stem cell fate, morphogenesis, proliferation, and genetic expression, with significant implications for neural and cardiac tissue models.Smart cell systems can enrich different cell types within organoids without external cues, as well as generate programmable gene perturbations, morphogen gradients, and chemical pulses. These systems can improve 3D organ models, especially for cardiac and neural tissue models.Declaration of interestR Flannigan is the CEO of Teumo Health Technologies Inc. VA Da Silva also declares support from Mitacs. S Willerth is also the CEO and co-founder of Axolotl Biosciences, a company that sells novel bioinks for 3D printing. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.Reviewer disclosuresPeer reviewers on this manuscript have no relevant financial or other relationships to disclose.Additional informationFundingThe authors are funded by the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canadian Institutes of Health Research (CIHR), the Canada Research Chair program, Mend The Gap – New Frontiers Transformational Research Fund, the Brazilian Coordination for the Improvement of Higher Education Personnel (CAPES) under grant 88887.694651/2022-00, the Brazilian National Council for Scientific and Technological Development (CNPq), the Stem Cell Network Canada, the Cardiology Academic Practice Plan, the University of British Columbia, and the Michael Smith Foundation for Health Research.Correction StatementThis article has been republished with minor changes. These changes do not impact the academic content of the article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MXY完成签到,获得积分10
1秒前
搜集达人应助平淡康采纳,获得20
1秒前
黄同学完成签到 ,获得积分10
3秒前
issac_wan完成签到,获得积分10
8秒前
9秒前
12秒前
大气的不乐完成签到 ,获得积分10
12秒前
12秒前
12秒前
chao2333完成签到 ,获得积分10
13秒前
青年才俊发布了新的文献求助10
13秒前
soleil发布了新的文献求助10
16秒前
psylin完成签到,获得积分20
16秒前
17秒前
17秒前
wanci应助大脚丫采纳,获得10
18秒前
18秒前
messi发布了新的文献求助30
19秒前
22秒前
青年才俊发布了新的文献求助10
22秒前
绝尘完成签到,获得积分10
24秒前
绝尘发布了新的文献求助10
28秒前
酷波er应助玩命的紫南采纳,获得10
29秒前
32秒前
虚幻雁荷完成签到 ,获得积分10
35秒前
刘丹雪完成签到,获得积分10
39秒前
39秒前
青年才俊发布了新的文献求助10
40秒前
yuqinghui98发布了新的文献求助10
40秒前
zhouleiwang完成签到,获得积分10
41秒前
xie完成签到 ,获得积分10
43秒前
研友_LaOyQZ发布了新的文献求助10
44秒前
47秒前
青年才俊发布了新的文献求助10
53秒前
bkagyin应助314gjj采纳,获得10
53秒前
56秒前
57秒前
诚心凝蝶完成签到,获得积分10
1分钟前
messi发布了新的文献求助10
1分钟前
椿人完成签到 ,获得积分10
1分钟前
高分求助中
Exploring Mitochondrial Autophagy Dysregulation in Osteosarcoma: Its Implications for Prognosis and Targeted Therapy 2000
Impact of Mitophagy-Related Genes on the Diagnosis and Development of Esophageal Squamous Cell Carcinoma via Single-Cell RNA-seq Analysis and Machine Learning Algorithms 2000
QMS18Ed2 | process management. 2nd ed 600
LNG as a marine fuel—Safety and Operational Guidelines - Bunkering 560
晶体非线性光学:带有 SNLO 示例(第二版) 500
Fatigue, environmental factors, and new materials : presented at the 1998 ASME/JSME Joint Pressure Vessels and Piping Conference : San Diego, California, July 26-30, 1998 500
Clinical Interviewing, 7th ed 400
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 电极
热门帖子
关注 科研通微信公众号,转发送积分 2945536
求助须知:如何正确求助?哪些是违规求助? 2605301
关于积分的说明 7017101
捐赠科研通 2246138
什么是DOI,文献DOI怎么找? 1191833
版权声明 590384
科研通“疑难数据库(出版商)”最低求助积分说明 583256