Sphere2Vec: A General-Purpose Location Representation Learning over a Spherical Surface for Large-Scale Geospatial Predictions

编码器 地理空间分析 编码(内存) 计算机科学 比例(比率) 点(几何) 编码 欧几里德距离 人工智能 公制(单位) 曲面(拓扑) 欧几里得空间 模式识别(心理学) 失真(音乐) 计算机视觉 算法 数学 几何学 地理 生物化学 化学 运营管理 地图学 纯数学 经济 基因 操作系统 放大器 计算机网络 带宽(计算)
作者
Gengchen Mai,Yao Xuan,Wenyun Zuo,Yutong He,Jiaming Song,Stefano Ermon,Krzysztof Janowicz,Ni Lao
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2306.17624
摘要

Generating learning-friendly representations for points in space is a fundamental and long-standing problem in ML. Recently, multi-scale encoding schemes (such as Space2Vec and NeRF) were proposed to directly encode any point in 2D/3D Euclidean space as a high-dimensional vector, and has been successfully applied to various geospatial prediction and generative tasks. However, all current 2D and 3D location encoders are designed to model point distances in Euclidean space. So when applied to large-scale real-world GPS coordinate datasets, which require distance metric learning on the spherical surface, both types of models can fail due to the map projection distortion problem (2D) and the spherical-to-Euclidean distance approximation error (3D). To solve these problems, we propose a multi-scale location encoder called Sphere2Vec which can preserve spherical distances when encoding point coordinates on a spherical surface. We developed a unified view of distance-reserving encoding on spheres based on the DFS. We also provide theoretical proof that the Sphere2Vec preserves the spherical surface distance between any two points, while existing encoding schemes do not. Experiments on 20 synthetic datasets show that Sphere2Vec can outperform all baseline models on all these datasets with up to 30.8% error rate reduction. We then apply Sphere2Vec to three geo-aware image classification tasks - fine-grained species recognition, Flickr image recognition, and remote sensing image classification. Results on 7 real-world datasets show the superiority of Sphere2Vec over multiple location encoders on all three tasks. Further analysis shows that Sphere2Vec outperforms other location encoder models, especially in the polar regions and data-sparse areas because of its nature for spherical surface distance preservation. Code and data are available at https://gengchenmai.github.io/sphere2vec-website/.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助TXQ采纳,获得10
1秒前
weeqe完成签到,获得积分10
1秒前
不倦应助卤肉饭与石榴汁采纳,获得30
2秒前
向晚完成签到 ,获得积分10
3秒前
naych发布了新的文献求助10
5秒前
5秒前
lili发布了新的文献求助10
6秒前
yifei完成签到,获得积分10
6秒前
暮光之城完成签到,获得积分10
7秒前
Chen完成签到,获得积分10
7秒前
YaoQi完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
pluto应助早安采纳,获得10
10秒前
辛卫铎完成签到,获得积分10
11秒前
科目三应助咸鱼采纳,获得30
11秒前
Chen发布了新的文献求助10
11秒前
13秒前
风思雅发布了新的文献求助10
13秒前
风中雨竹发布了新的文献求助10
15秒前
TXQ发布了新的文献求助10
15秒前
16秒前
快乐的龙猫完成签到,获得积分10
18秒前
18秒前
小马甲应助小小医采纳,获得10
18秒前
答辩完成签到 ,获得积分10
20秒前
关耳发布了新的文献求助10
21秒前
李爱国应助lili采纳,获得10
22秒前
今后应助哈机密南北撸多采纳,获得10
23秒前
24秒前
老虎皮发布了新的文献求助10
24秒前
鞘皮完成签到,获得积分10
25秒前
Jasper应助科研通管家采纳,获得10
27秒前
Orange应助科研通管家采纳,获得30
27秒前
森活鱼块应助科研通管家采纳,获得10
27秒前
小马甲应助科研通管家采纳,获得10
27秒前
Owen应助科研通管家采纳,获得10
27秒前
香蕉觅云应助科研通管家采纳,获得10
27秒前
顾矜应助科研通管家采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601676
求助须知:如何正确求助?哪些是违规求助? 4687108
关于积分的说明 14847661
捐赠科研通 4681810
什么是DOI,文献DOI怎么找? 2539466
邀请新用户注册赠送积分活动 1506355
关于科研通互助平台的介绍 1471335