Sphere2Vec: A General-Purpose Location Representation Learning over a Spherical Surface for Large-Scale Geospatial Predictions

编码器 地理空间分析 编码(内存) 计算机科学 比例(比率) 点(几何) 编码 欧几里德距离 人工智能 公制(单位) 曲面(拓扑) 欧几里得空间 模式识别(心理学) 失真(音乐) 计算机视觉 算法 数学 几何学 地理 生物化学 化学 运营管理 地图学 纯数学 经济 基因 操作系统 放大器 计算机网络 带宽(计算)
作者
Gengchen Mai,Yao Xuan,Wenyun Zuo,Yutong He,Jiaming Song,Stefano Ermon,Krzysztof Janowicz,Ni Lao
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2306.17624
摘要

Generating learning-friendly representations for points in space is a fundamental and long-standing problem in ML. Recently, multi-scale encoding schemes (such as Space2Vec and NeRF) were proposed to directly encode any point in 2D/3D Euclidean space as a high-dimensional vector, and has been successfully applied to various geospatial prediction and generative tasks. However, all current 2D and 3D location encoders are designed to model point distances in Euclidean space. So when applied to large-scale real-world GPS coordinate datasets, which require distance metric learning on the spherical surface, both types of models can fail due to the map projection distortion problem (2D) and the spherical-to-Euclidean distance approximation error (3D). To solve these problems, we propose a multi-scale location encoder called Sphere2Vec which can preserve spherical distances when encoding point coordinates on a spherical surface. We developed a unified view of distance-reserving encoding on spheres based on the DFS. We also provide theoretical proof that the Sphere2Vec preserves the spherical surface distance between any two points, while existing encoding schemes do not. Experiments on 20 synthetic datasets show that Sphere2Vec can outperform all baseline models on all these datasets with up to 30.8% error rate reduction. We then apply Sphere2Vec to three geo-aware image classification tasks - fine-grained species recognition, Flickr image recognition, and remote sensing image classification. Results on 7 real-world datasets show the superiority of Sphere2Vec over multiple location encoders on all three tasks. Further analysis shows that Sphere2Vec outperforms other location encoder models, especially in the polar regions and data-sparse areas because of its nature for spherical surface distance preservation. Code and data are available at https://gengchenmai.github.io/sphere2vec-website/.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小叶子发布了新的文献求助10
刚刚
FashionBoy应助一条裸游的鱼采纳,获得10
2秒前
2秒前
2秒前
SciGPT应助简单如天采纳,获得10
3秒前
3秒前
WN发布了新的文献求助10
3秒前
月亮完成签到,获得积分10
3秒前
我爱学习发布了新的文献求助10
3秒前
堪曼凝完成签到,获得积分10
3秒前
彭于彦祖应助GTY采纳,获得80
3秒前
4秒前
4秒前
WK完成签到,获得积分10
4秒前
ppphh完成签到,获得积分20
4秒前
像鱼发布了新的文献求助10
5秒前
一条小鱼完成签到,获得积分20
5秒前
沁晨完成签到,获得积分10
5秒前
半圆亻完成签到,获得积分10
5秒前
6秒前
ZHQ发布了新的文献求助10
6秒前
7890733发布了新的文献求助10
6秒前
6秒前
顾矜应助junkljsun采纳,获得10
6秒前
7秒前
栗子发布了新的文献求助20
7秒前
FashionBoy应助Tessa采纳,获得10
8秒前
Jasper应助drughunter009采纳,获得10
8秒前
像鱼完成签到,获得积分10
9秒前
小蘑菇应助DMMM采纳,获得10
10秒前
DoubleLD完成签到,获得积分10
10秒前
尤寄风完成签到,获得积分10
11秒前
未命名发布了新的文献求助50
11秒前
四堵墙发布了新的文献求助10
11秒前
一条小鱼发布了新的文献求助10
12秒前
岁岁念念完成签到,获得积分20
12秒前
夜包子123应助执着梦柏采纳,获得10
13秒前
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5429451
求助须知:如何正确求助?哪些是违规求助? 4542928
关于积分的说明 14183617
捐赠科研通 4460886
什么是DOI,文献DOI怎么找? 2445912
邀请新用户注册赠送积分活动 1437068
关于科研通互助平台的介绍 1414191