已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Sphere2Vec: A General-Purpose Location Representation Learning over a Spherical Surface for Large-Scale Geospatial Predictions

编码器 地理空间分析 编码(内存) 计算机科学 比例(比率) 点(几何) 编码 欧几里德距离 人工智能 公制(单位) 曲面(拓扑) 欧几里得空间 模式识别(心理学) 失真(音乐) 计算机视觉 算法 数学 几何学 地理 运营管理 操作系统 基因 地图学 经济 生物化学 化学 放大器 纯数学 带宽(计算) 计算机网络
作者
Gengchen Mai,Yao Xuan,Wenyun Zuo,Yutong He,Jiaming Song,Stefano Ermon,Krzysztof Janowicz,Ni Lao
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2306.17624
摘要

Generating learning-friendly representations for points in space is a fundamental and long-standing problem in ML. Recently, multi-scale encoding schemes (such as Space2Vec and NeRF) were proposed to directly encode any point in 2D/3D Euclidean space as a high-dimensional vector, and has been successfully applied to various geospatial prediction and generative tasks. However, all current 2D and 3D location encoders are designed to model point distances in Euclidean space. So when applied to large-scale real-world GPS coordinate datasets, which require distance metric learning on the spherical surface, both types of models can fail due to the map projection distortion problem (2D) and the spherical-to-Euclidean distance approximation error (3D). To solve these problems, we propose a multi-scale location encoder called Sphere2Vec which can preserve spherical distances when encoding point coordinates on a spherical surface. We developed a unified view of distance-reserving encoding on spheres based on the DFS. We also provide theoretical proof that the Sphere2Vec preserves the spherical surface distance between any two points, while existing encoding schemes do not. Experiments on 20 synthetic datasets show that Sphere2Vec can outperform all baseline models on all these datasets with up to 30.8% error rate reduction. We then apply Sphere2Vec to three geo-aware image classification tasks - fine-grained species recognition, Flickr image recognition, and remote sensing image classification. Results on 7 real-world datasets show the superiority of Sphere2Vec over multiple location encoders on all three tasks. Further analysis shows that Sphere2Vec outperforms other location encoder models, especially in the polar regions and data-sparse areas because of its nature for spherical surface distance preservation. Code and data are available at https://gengchenmai.github.io/sphere2vec-website/.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秋刀鱼不过期完成签到 ,获得积分10
1秒前
1秒前
2秒前
4秒前
轻舟发布了新的文献求助10
5秒前
Hello应助Corn_Dog采纳,获得10
13秒前
Amy完成签到,获得积分10
18秒前
19秒前
平淡的雁开完成签到 ,获得积分10
19秒前
8531发布了新的文献求助10
25秒前
Corn_Dog发布了新的文献求助10
25秒前
田様应助su采纳,获得10
26秒前
万能图书馆应助吾月采纳,获得10
30秒前
热情安卉发布了新的文献求助10
31秒前
善学以致用应助杨颖采纳,获得10
32秒前
32秒前
33秒前
科研小白完成签到 ,获得积分10
34秒前
LJQ完成签到,获得积分20
34秒前
长安完成签到 ,获得积分10
36秒前
Mankind发布了新的文献求助10
36秒前
39秒前
40秒前
40秒前
量子星尘发布了新的文献求助10
41秒前
小蘑菇应助8531采纳,获得10
42秒前
轻舟发布了新的文献求助10
43秒前
45秒前
仙人发布了新的文献求助30
45秒前
杨颖发布了新的文献求助10
46秒前
李爱国应助忧郁凡霜采纳,获得10
46秒前
46秒前
Joker完成签到,获得积分10
47秒前
Ava应助善良语雪采纳,获得10
48秒前
文献看了吗完成签到,获得积分10
56秒前
57秒前
58秒前
光亮雁玉完成签到 ,获得积分10
1分钟前
善良语雪发布了新的文献求助10
1分钟前
mengyanchao完成签到,获得积分10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959927
求助须知:如何正确求助?哪些是违规求助? 3506124
关于积分的说明 11128074
捐赠科研通 3238096
什么是DOI,文献DOI怎么找? 1789502
邀请新用户注册赠送积分活动 871803
科研通“疑难数据库(出版商)”最低求助积分说明 803024