Sphere2Vec: A General-Purpose Location Representation Learning over a Spherical Surface for Large-Scale Geospatial Predictions

编码器 地理空间分析 编码(内存) 计算机科学 比例(比率) 点(几何) 编码 欧几里德距离 人工智能 公制(单位) 曲面(拓扑) 欧几里得空间 模式识别(心理学) 失真(音乐) 计算机视觉 算法 数学 几何学 地理 生物化学 化学 运营管理 地图学 纯数学 经济 基因 操作系统 放大器 计算机网络 带宽(计算)
作者
Gengchen Mai,Yao Xuan,Wenyun Zuo,Yutong He,Jiaming Song,Stefano Ermon,Krzysztof Janowicz,Ni Lao
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2306.17624
摘要

Generating learning-friendly representations for points in space is a fundamental and long-standing problem in ML. Recently, multi-scale encoding schemes (such as Space2Vec and NeRF) were proposed to directly encode any point in 2D/3D Euclidean space as a high-dimensional vector, and has been successfully applied to various geospatial prediction and generative tasks. However, all current 2D and 3D location encoders are designed to model point distances in Euclidean space. So when applied to large-scale real-world GPS coordinate datasets, which require distance metric learning on the spherical surface, both types of models can fail due to the map projection distortion problem (2D) and the spherical-to-Euclidean distance approximation error (3D). To solve these problems, we propose a multi-scale location encoder called Sphere2Vec which can preserve spherical distances when encoding point coordinates on a spherical surface. We developed a unified view of distance-reserving encoding on spheres based on the DFS. We also provide theoretical proof that the Sphere2Vec preserves the spherical surface distance between any two points, while existing encoding schemes do not. Experiments on 20 synthetic datasets show that Sphere2Vec can outperform all baseline models on all these datasets with up to 30.8% error rate reduction. We then apply Sphere2Vec to three geo-aware image classification tasks - fine-grained species recognition, Flickr image recognition, and remote sensing image classification. Results on 7 real-world datasets show the superiority of Sphere2Vec over multiple location encoders on all three tasks. Further analysis shows that Sphere2Vec outperforms other location encoder models, especially in the polar regions and data-sparse areas because of its nature for spherical surface distance preservation. Code and data are available at https://gengchenmai.github.io/sphere2vec-website/.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咖啡豆完成签到 ,获得积分0
刚刚
刚刚
刚刚
Yue驳回了大模型应助
1秒前
方兴未艾完成签到 ,获得积分10
1秒前
Pana完成签到,获得积分10
1秒前
乐乐应助土豪的书蝶采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
2秒前
whatever应助科研通管家采纳,获得20
2秒前
2秒前
柑橘应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
iNk应助科研通管家采纳,获得10
2秒前
yufanhui应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
2秒前
Cloud应助科研通管家采纳,获得20
2秒前
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
congjia发布了新的文献求助20
2秒前
iNk应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
TAboo完成签到,获得积分10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
加菲丰丰应助科研通管家采纳,获得30
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
小黎完成签到,获得积分10
3秒前
诚心静芙完成签到,获得积分10
3秒前
冷静惜文发布了新的文献求助10
3秒前
坤坤发布了新的文献求助10
4秒前
追梦人完成签到 ,获得积分10
4秒前
思想的小鱼完成签到,获得积分10
4秒前
5秒前
老王发布了新的文献求助10
6秒前
喜悦尔槐发布了新的文献求助50
6秒前
WangRui完成签到,获得积分10
6秒前
思源应助辣辣采纳,获得20
6秒前
浪里白条发布了新的文献求助10
7秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151089
求助须知:如何正确求助?哪些是违规求助? 2802543
关于积分的说明 7848537
捐赠科研通 2459877
什么是DOI,文献DOI怎么找? 1309380
科研通“疑难数据库(出版商)”最低求助积分说明 628897
版权声明 601757