Fast and precise collision detection for detailed and complex physiological structures

碰撞检测 计算机科学 跳跃式监视 碰撞 边界体积 算法 代表(政治) 等级制度 模拟 职位(财务) 人工智能 计算机安全 财务 政治 法学 政治学 经济 市场经济
作者
Chaoji Shi,Qi Yang,Xiangrui Zhao,Shuchang Shi,Sutuke Yibulayimu,Jixuan Liu,Yu Wang,Chunpeng Zhao
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:240: 107707-107707
标识
DOI:10.1016/j.cmpb.2023.107707
摘要

Virtual reality has been proved indispensable in computer-assisted surgery, especially for surgical planning, and simulation systems. Collision detection is an essential part of surgery simulators and its accuracy and computational efficiency play a decisive role in the fidelity of simulations. Nevertheless, current collision detection methods in surgical simulation and planning struggle to meet precise requirements, especially for detailed and complex physiological structures. To address this, the primary objective of this study was to develop a new algorithm that enables fast and precise collision detection to facilitate the improvement of the realism of virtual reality surgical procedures. The method consists of two main parts, bounding spheres formation and two-level collision detection. A specified surface subdivision method is devised to reduce the radius of basic bounding spheres formed by circumcenters of underlying triangles. The spheres are then clustered and adjusted to obtain a compact personalized hierarchy whose position is updated in real time during surgical simulation, followed by two-level collision detection. Triangular facets with collision potential through interaction between hierarchies and then accurate results are obtained by means of precise detection phase. The effectiveness of the algorithm was evaluated in various models and surgical scenarios and was compared with prior relevant implementations. Results on multiple models demonstrated that the method can generate a personalized hierarchy with fewer and smaller bounding spheres for tight wrapping. Simulation experiments proved that the proposed approach is significantly superior to comparable methods under the premise of error-free detection, even for severe model-model collision. The algorithm proposed through this study enables higher numerical efficiency and detection accuracy, which is capable of significantly enlarging the fidelity/realism of haptic simulators and surgical planning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
hyaoooo完成签到 ,获得积分10
1秒前
1秒前
内向耷关注了科研通微信公众号
2秒前
惜曦完成签到 ,获得积分10
2秒前
浩浩浩完成签到,获得积分10
3秒前
123完成签到,获得积分10
3秒前
年华完成签到,获得积分10
4秒前
悠然完成签到,获得积分10
4秒前
刘丹丹发布了新的文献求助20
4秒前
ydl0413完成签到,获得积分20
4秒前
Owen应助小黄采纳,获得10
5秒前
shelly发布了新的文献求助10
6秒前
6秒前
6秒前
元水云发布了新的文献求助10
7秒前
顾矜应助张豪杰采纳,获得10
7秒前
8秒前
DRAZ完成签到,获得积分10
9秒前
刘小天完成签到,获得积分10
10秒前
鱼饼完成签到 ,获得积分10
10秒前
cq220完成签到 ,获得积分10
10秒前
典雅不凡发布了新的文献求助10
11秒前
皮皮小怪完成签到,获得积分10
11秒前
ZKG完成签到 ,获得积分10
11秒前
wancheng_发布了新的文献求助10
13秒前
14秒前
hz完成签到,获得积分10
15秒前
夜夜夜完成签到,获得积分10
16秒前
纪间完成签到,获得积分10
16秒前
16秒前
打打应助端木熙采纳,获得10
16秒前
eris完成签到 ,获得积分10
16秒前
gmchen完成签到,获得积分10
17秒前
幸福胡萝卜完成签到,获得积分10
17秒前
小林完成签到,获得积分10
17秒前
DddZS发布了新的文献求助10
17秒前
777发布了新的文献求助10
19秒前
zhou发布了新的文献求助10
19秒前
快乐完成签到,获得积分10
19秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162727
求助须知:如何正确求助?哪些是违规求助? 2813601
关于积分的说明 7901404
捐赠科研通 2473189
什么是DOI,文献DOI怎么找? 1316684
科研通“疑难数据库(出版商)”最低求助积分说明 631482
版权声明 602175