免疫原性
主要组织相容性复合体
表位
计算生物学
MHC I级
人类白细胞抗原
免疫学
计算机科学
抗原
生物
作者
Benjamin Alexander Albert,Yunxiao Yang,Xiaoshan M. Shao,Dipika Singh,Kellie N. Smith,Valsamo Anagnostou,Rachel Karchin
标识
DOI:10.1038/s42256-023-00694-6
摘要
Identifying neoepitopes that elicit an adaptive immune response is a major bottleneck to developing personalized cancer vaccines. Experimental validation of candidate neoepitopes is extremely resource intensive and the vast majority of candidates are non-immunogenic, creating a needle-in-a-haystack problem. Here we address this challenge, presenting computational methods for predicting class I major histocompatibility complex (MHC-I) epitopes and identifying immunogenic neoepitopes with improved precision. The BigMHC method comprises an ensemble of seven pan-allelic deep neural networks trained on peptide–MHC eluted ligand data from mass spectrometry assays and transfer learned on data from assays of antigen-specific immune response. Compared with four state-of-the-art classifiers, BigMHC significantly improves the prediction of epitope presentation on a test set of 45,409 MHC ligands among 900,592 random negatives (area under the receiver operating characteristic = 0.9733; area under the precision-recall curve = 0.8779). After transfer learning on immunogenicity data, BigMHC yields significantly higher precision than seven state-of-the-art models in identifying immunogenic neoepitopes, making BigMHC effective in clinical settings. Out of the large number of neoepitopes, few elicit an immune response from the major histocompatibility complex. To predict which neoepitopes can be effective, Albert and colleagues present a method based on long short-term memory ensembles and transfer learning from immunogenicity assays.
科研通智能强力驱动
Strongly Powered by AbleSci AI