Rapid authentication of variants of Gastrodia elata Blume using near-infrared spectroscopy combined with chemometric methods

化学计量学 化学 偏最小二乘回归 变量消去 试验装置 特征选择 稳健性(进化) 投影(关系代数) 近红外光谱 生物系统 模式识别(心理学) 人工智能 统计 色谱法 数学 算法 计算机科学 生物化学 物理 量子力学 推论 生物 基因
作者
Panpan Yang,Zhiwen Zeng,Ying Hou,Aiming Chen,Juan Xu,Long-qing Zhao,Xiangyi Liu
出处
期刊:Journal of Pharmaceutical and Biomedical Analysis [Elsevier]
卷期号:235: 115592-115592 被引量:3
标识
DOI:10.1016/j.jpba.2023.115592
摘要

The variety is one of the most important factors to generate difference of chemical compositions, which unavoidably influences the quality of natural medicine. Thus, simple and rapid authentication of different variants has great academic and practical significance. In this study, the goal was achieved with the help of near infrared spectroscopy (NIR) and chemometrics by using Gastrodia elata Blume as an example. A total of 540 samples including two classes of variants and their forms were investigated as a whole. The mean spectra of samples of each class and their 2-D synchronous correlation spectra were simultaneously applied to discover the difference of chemical characteristics. After hybrid pre-processing of the first and second derivative combined with Savitzky-Golay and Norris filtering, partial least squares discrimination analysis (PLS-DA) on the basis of latent variable projection was used to assess the feasibility for classification. The results show higher prediction accuracy in both internal test set and external prediction set. In order to further improve the robustness for modeling, three methods for wavelength selection were comprehensively compared to optimize PLS-DA models, including variable importance in the projection (VIP), random frog (RF), and Monte Carlo uninformative variable elimination (MC-UVE). The prediction accuracy of combination of the 2nd derivative, Norris, MC-UVE and PLS-DA achieved to 99.11% and 98.89% corresponding to the internal test set and external prediction set, respectively. The strategies proposed in this work perform effectiveness for rapid and accurate authentication of variants of plants with high chemical complexity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuyiyi完成签到,获得积分10
刚刚
无花果应助胖豆采纳,获得10
1秒前
通~发布了新的文献求助10
1秒前
cc发布了新的文献求助10
2秒前
3秒前
MILL发布了新的文献求助10
3秒前
月光入梦完成签到 ,获得积分10
4秒前
HC完成签到,获得积分10
5秒前
琪琪发布了新的文献求助10
5秒前
6秒前
淡定的思松应助风的季节采纳,获得10
7秒前
所所应助mm采纳,获得10
7秒前
8秒前
荒年完成签到,获得积分10
8秒前
魁梧的曼凡完成签到,获得积分10
8秒前
9秒前
研一小刘发布了新的文献求助10
9秒前
陈莹完成签到,获得积分20
9秒前
qi发布了新的文献求助30
10秒前
10秒前
Wyan完成签到,获得积分20
10秒前
我是老大应助通~采纳,获得10
11秒前
Jenny应助淡定紫菱采纳,获得10
11秒前
逆流的鱼完成签到 ,获得积分10
12秒前
12秒前
liuqian完成签到,获得积分10
13秒前
Hou完成签到 ,获得积分10
13秒前
反杀闰土的猹完成签到 ,获得积分20
13秒前
所所应助cc采纳,获得10
14秒前
邵裘完成签到,获得积分10
14秒前
丘比特应助yin采纳,获得10
14秒前
15秒前
15秒前
15秒前
希望天下0贩的0应助sss采纳,获得20
15秒前
拼搏向前发布了新的文献求助10
15秒前
紫罗兰花海完成签到 ,获得积分10
16秒前
琪琪完成签到,获得积分10
17秒前
17秒前
爆米花应助高兴藏花采纳,获得10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794