ATM: Black-box Test Case Minimization based on Test Code Similarity and Evolutionary Search

计算机科学 测试套件 代码覆盖率 测试用例 抽象语法树 故障覆盖率 可扩展性 缩小 相似性(几何) 自动测试模式生成 考试(生物学) Java 回归检验 语法 程序设计语言 软件 人工智能 机器学习 软件开发 操作系统 工程类 生物 软件建设 古生物学 回归分析 电气工程 图像(数学) 电子线路
作者
Rongqi Pan,Taher Ahmed Ghaleb,Lionel Briand
标识
DOI:10.1109/icse48619.2023.00146
摘要

Executing large test suites is time and resource consuming, sometimes impossible, and such test suites typically contain many redundant test cases. Hence, test case (suite) minimization is used to remove redundant test cases that are unlikely to detect new faults. However, most test case minimization techniques rely on code coverage (white-box), model-based features, or requirements specifications, which are not always (entirely) accessible by test engineers. Code coverage analysis also leads to scalability issues, especially when applied to large industrial systems. Recently, a set of novel techniques was proposed, called FAST-R, relying solely on test case code for test case minimization, which appeared to be much more efficient than white-box techniques. However, it achieved a comparable low fault detection capability for Java projects, thus making its application challenging in practice. In this paper, we propose ATM (AST-based Test case Minimizer), a similarity-based, search-based test case minimization technique, taking a specific budget as input, that also relies exclusively on the source code of test cases but attempts to achieve higher fault detection through finer-grained similarity analysis and a dedicated search algorithm. ATM transforms test case code into Abstract Syntax Trees (AST) and relies on four tree-based similarity measures to apply evolutionary search, specifically genetic algorithms, to minimize test cases. We evaluated the effectiveness and efficiency of ATM on a large dataset of 16 Java projects with 661 faulty versions using three budgets ranging from 25% to 75% of test suites. ATM achieved significantly higher fault detection rates (0.82 on average), compared to FAST-R (0.61 on average) and random minimization (0.52 on average), when running only 50% of the test cases, within practically acceptable time (1.1 - 4.3 hours, on average, per project version), given that minimization is only occasionally applied when many new test cases are created (major releases). Results achieved for other budgets were consistent.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sunflower完成签到 ,获得积分20
刚刚
1秒前
Ronan完成签到,获得积分10
1秒前
1秒前
完美世界应助Fire采纳,获得10
1秒前
1秒前
1秒前
2秒前
2秒前
2秒前
2秒前
粥粥完成签到,获得积分10
3秒前
llk完成签到 ,获得积分10
3秒前
自信的傲旋完成签到,获得积分10
4秒前
4秒前
美满的晓丝完成签到,获得积分10
5秒前
shen发布了新的文献求助30
5秒前
5秒前
吼住吼住完成签到 ,获得积分10
5秒前
li完成签到 ,获得积分10
5秒前
温暖半芹完成签到,获得积分20
6秒前
张志迪发布了新的文献求助10
6秒前
6秒前
小石头完成签到,获得积分10
6秒前
fxy发布了新的文献求助10
6秒前
科研小白发布了新的文献求助30
6秒前
kk发布了新的文献求助10
6秒前
6秒前
6秒前
mmol发布了新的文献求助10
7秒前
陶醉的向南完成签到,获得积分10
7秒前
XY应助好运莲莲采纳,获得14
7秒前
科研通AI6应助0717号执行官采纳,获得10
8秒前
8秒前
hjygzv完成签到 ,获得积分10
8秒前
认真凌兰发布了新的文献求助10
9秒前
Mr.Reese完成签到,获得积分10
9秒前
李文俊的太祖王振全完成签到,获得积分10
9秒前
9秒前
Carolna完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525453
求助须知:如何正确求助?哪些是违规求助? 4615640
关于积分的说明 14549575
捐赠科研通 4553716
什么是DOI,文献DOI怎么找? 2495470
邀请新用户注册赠送积分活动 1476017
关于科研通互助平台的介绍 1447758