ATM: Black-box Test Case Minimization based on Test Code Similarity and Evolutionary Search

计算机科学 测试套件 代码覆盖率 测试用例 抽象语法树 故障覆盖率 可扩展性 缩小 相似性(几何) 自动测试模式生成 考试(生物学) Java 回归检验 语法 程序设计语言 软件 人工智能 机器学习 软件开发 操作系统 工程类 电子线路 电气工程 古生物学 回归分析 图像(数学) 软件建设 生物
作者
Rongqi Pan,Taher Ahmed Ghaleb,Lionel Briand
标识
DOI:10.1109/icse48619.2023.00146
摘要

Executing large test suites is time and resource consuming, sometimes impossible, and such test suites typically contain many redundant test cases. Hence, test case (suite) minimization is used to remove redundant test cases that are unlikely to detect new faults. However, most test case minimization techniques rely on code coverage (white-box), model-based features, or requirements specifications, which are not always (entirely) accessible by test engineers. Code coverage analysis also leads to scalability issues, especially when applied to large industrial systems. Recently, a set of novel techniques was proposed, called FAST-R, relying solely on test case code for test case minimization, which appeared to be much more efficient than white-box techniques. However, it achieved a comparable low fault detection capability for Java projects, thus making its application challenging in practice. In this paper, we propose ATM (AST-based Test case Minimizer), a similarity-based, search-based test case minimization technique, taking a specific budget as input, that also relies exclusively on the source code of test cases but attempts to achieve higher fault detection through finer-grained similarity analysis and a dedicated search algorithm. ATM transforms test case code into Abstract Syntax Trees (AST) and relies on four tree-based similarity measures to apply evolutionary search, specifically genetic algorithms, to minimize test cases. We evaluated the effectiveness and efficiency of ATM on a large dataset of 16 Java projects with 661 faulty versions using three budgets ranging from 25% to 75% of test suites. ATM achieved significantly higher fault detection rates (0.82 on average), compared to FAST-R (0.61 on average) and random minimization (0.52 on average), when running only 50% of the test cases, within practically acceptable time (1.1 - 4.3 hours, on average, per project version), given that minimization is only occasionally applied when many new test cases are created (major releases). Results achieved for other budgets were consistent.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助顺利的夜梦采纳,获得10
1秒前
as发布了新的文献求助10
1秒前
2秒前
方向完成签到 ,获得积分10
2秒前
2秒前
newnew发布了新的文献求助10
3秒前
dongxuzhen发布了新的文献求助10
3秒前
是小越啊完成签到,获得积分10
5秒前
管你完成签到,获得积分20
6秒前
6秒前
rum发布了新的文献求助10
6秒前
热情嘉懿发布了新的文献求助10
6秒前
L_Zoe_D02完成签到,获得积分10
8秒前
ruby发布了新的文献求助10
9秒前
12秒前
newnew完成签到,获得积分10
12秒前
14秒前
英姑应助龚俊采纳,获得10
14秒前
15秒前
烟花应助cenghao采纳,获得10
15秒前
大个应助zxl采纳,获得10
16秒前
meimei完成签到,获得积分10
17秒前
新嗨完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
yimi完成签到,获得积分10
17秒前
18秒前
19秒前
小崔发布了新的文献求助10
19秒前
研友_VZG7GZ应助wqkkk采纳,获得10
19秒前
guandada发布了新的文献求助10
19秒前
19秒前
19秒前
没霉梅梅发布了新的文献求助10
20秒前
20秒前
bkagyin应助任罗川采纳,获得10
20秒前
新嗨发布了新的文献求助10
21秒前
向浩发布了新的文献求助10
21秒前
WhiteCaramel完成签到 ,获得积分10
22秒前
科目三应助Alan采纳,获得30
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5632327
求助须知:如何正确求助?哪些是违规求助? 4726681
关于积分的说明 14981762
捐赠科研通 4790262
什么是DOI,文献DOI怎么找? 2558238
邀请新用户注册赠送积分活动 1518646
关于科研通互助平台的介绍 1479089