Bridging POMDPs and Bayesian decision making for robust maintenance planning under model uncertainty: An application to railway systems

部分可观测马尔可夫决策过程 计算机科学 马尔科夫蒙特卡洛 马尔可夫决策过程 贝叶斯推理 贝叶斯概率 过程(计算) 推论 数学优化 马尔可夫过程 机器学习 马尔可夫链 人工智能 马尔可夫模型 数学 统计 操作系统
作者
Giacomo Arcieri,Cyprien Hoelzl,Oliver Schwery,Eleni Chatzi,Konstantinos G. Papakonstantinou,Eleni Chatzi
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:239: 109496-109496 被引量:10
标识
DOI:10.1016/j.ress.2023.109496
摘要

Structural Health Monitoring (SHM) describes a process for inferring quantifiable metrics of structural condition, which can serve as input to support decisions on the operation and maintenance of infrastructure assets. Given the long lifespan of critical structures, this problem can be cast as a sequential decision making problem over prescribed horizons. Partially Observable Markov Decision Processes (POMDPs) offer a formal framework to solve the underlying optimal planning task. However, two issues can undermine the POMDP solutions. Firstly, the need for a model that can adequately describe the evolution of the structural condition under deterioration or corrective actions and, secondly, the non-trivial task of recovery of the observation process parameters from available monitoring data. Despite these potential challenges, the adopted POMDP models do not typically account for uncertainty on model parameters, leading to solutions which can be unrealistically confident. In this work, we address both key issues. We present a framework to estimate POMDP transition and observation model parameters directly from available data, via Markov Chain Monte Carlo (MCMC) sampling of a Hidden Markov Model (HMM) conditioned on actions. The MCMC inference estimates distributions of the involved model parameters. We then form and solve the POMDP problem by exploiting the inferred distributions, to derive solutions that are robust to model uncertainty. We successfully apply our approach on maintenance planning for railway track assets on the basis of a “fractal value” indicator, which is computed from actual railway monitoring data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
songvv完成签到,获得积分20
1秒前
我是老大应助科研通管家采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
6秒前
xiaoming应助科研通管家采纳,获得10
6秒前
酷波er应助科研通管家采纳,获得30
6秒前
乐乐应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
NexusExplorer应助花花采纳,获得10
7秒前
科研通AI2S应助songvv采纳,获得10
7秒前
9秒前
14秒前
丁浩发布了新的文献求助10
16秒前
沉默天德完成签到,获得积分10
18秒前
18秒前
哆啦小鱼完成签到,获得积分10
19秒前
不配.应助YQ采纳,获得10
21秒前
Ava应助YQ采纳,获得10
21秒前
wdnyrrc发布了新的文献求助10
23秒前
于清绝完成签到 ,获得积分10
25秒前
25秒前
长安完成签到,获得积分10
28秒前
29秒前
Owen应助suan采纳,获得10
31秒前
123lx完成签到,获得积分20
35秒前
36秒前
所所应助诸葛书虫采纳,获得10
39秒前
41秒前
Nowind发布了新的文献求助30
42秒前
丘比特应助aaaaarfv采纳,获得10
43秒前
44秒前
qwe完成签到,获得积分10
45秒前
好好努力小王完成签到,获得积分10
46秒前
nj发布了新的文献求助10
47秒前
catsfat发布了新的文献求助10
47秒前
Della发布了新的文献求助10
47秒前
姜灭绝完成签到,获得积分10
51秒前
53秒前
54秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138572
求助须知:如何正确求助?哪些是违规求助? 2789520
关于积分的说明 7791526
捐赠科研通 2445903
什么是DOI,文献DOI怎么找? 1300715
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079