韵律
语音识别
计算机科学
学习迁移
自然语言处理
心理学
人工智能
语言学
哲学
作者
Navid Naderi,Babak Nasersharif
标识
DOI:10.1016/j.knosys.2023.110814
摘要
Speech Emotion Recognition (SER) performance degrades when their training and test conditions or corpora differ. Cross-corpus SER (CCSER) is a research branch that discusses adapting an SER system to identify speech emotions on a corpus that has different recording conditions or language from the training corpus. For CCSER, adaption can be performed in the feature extraction module or emotion classifier, which are the two main components of the SER system. In this paper, we propose AFTL method (attention-based feature fusion along with transfer learning), including methods in both feature extraction and classification for CCSER. In the feature extraction part, we use Wav2Vec 2.0 transformer blocks and prosody features, and we propose an attention method for fusing them. In the classifier part, we use transfer learning for transferring the knowledge of a model trained on source emotional speech corpus to recognize emotions on a target corpus. We performed experiments on numerous speech emotional datasets as target corpora, where we used IEMOCAP as the source corpus. For instance, we achieve 92.45% accuracy on the EmoDB dataset, where we only use 20% of speakers for adapting the source model. In addition, for other target corpora, we obtained admissible results.
科研通智能强力驱动
Strongly Powered by AbleSci AI