Using Computational Simulations to Model Deleterious Variation and Genetic Load in Natural Populations

变化(天文学) 计算机科学 计算模型 遗传变异 生物 人工智能 遗传学 天体物理学 基因 物理
作者
Christopher C. Kyriazis,Jacqueline A. Robinson,Kirk E. Lohmueller
出处
期刊:The American Naturalist [University of Chicago Press]
卷期号:202 (6): 737-752 被引量:14
标识
DOI:10.1086/726736
摘要

AbstractDeleterious genetic variation is abundant in wild populations, and understanding the ecological and conservation implications of such variation is an area of active research. Genomic methods are increasingly used to quantify the impacts of deleterious variation in natural populations; however, these approaches remain limited by an inability to accurately predict the selective and dominance effects of mutations. Computational simulations of deleterious variation offer a complementary tool that can help overcome these limitations, although such approaches have yet to be widely employed. In this perspective article, we aim to encourage ecological and conservation genomics researchers to adopt greater use of computational simulations to aid in deepening our understanding of deleterious variation in natural populations. We first provide an overview of the components of a simulation of deleterious variation, describing the key parameters involved in such models. Next, we discuss several approaches for validating simulation models. Finally, we compare and validate several recently proposed deleterious mutation models, demonstrating that models based on estimates of selection parameters from experimental systems are biased toward highly deleterious mutations. We describe a new model that is supported by multiple orthogonal lines of evidence and provide example scripts for implementing this model (https://github.com/ckyriazis/simulations_review).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
老王完成签到,获得积分10
刚刚
刚刚
baobaobaozi发布了新的文献求助10
2秒前
3秒前
彭于晏应助zhangxinting0818采纳,获得10
4秒前
研友_Ze0vBn发布了新的文献求助10
5秒前
卡乐瑞咩吹可完成签到,获得积分10
6秒前
归尘发布了新的文献求助10
6秒前
7秒前
典雅的纸飞机完成签到 ,获得积分10
8秒前
10秒前
hehe完成签到,获得积分10
11秒前
11秒前
yx_cheng应助GT采纳,获得30
12秒前
可口可乐完成签到 ,获得积分10
13秒前
15秒前
科研鸟发布了新的文献求助10
15秒前
细腻灵安发布了新的文献求助10
17秒前
小宋同学不能怂完成签到 ,获得积分10
18秒前
干饭大王应助wenwen采纳,获得10
19秒前
19秒前
研友_Ze0vBn完成签到,获得积分10
20秒前
jim完成签到 ,获得积分10
20秒前
Sewerant完成签到 ,获得积分10
21秒前
LUO完成签到 ,获得积分10
21秒前
22秒前
Akim应助Pericardium采纳,获得10
22秒前
干饭大王应助科研鸟采纳,获得10
23秒前
23秒前
凉白开完成签到,获得积分10
23秒前
我是老大应助monned采纳,获得10
25秒前
25秒前
小姜完成签到,获得积分10
26秒前
清秀人杰发布了新的文献求助10
27秒前
yx_cheng应助GT采纳,获得30
27秒前
LC发布了新的文献求助10
28秒前
jack完成签到 ,获得积分10
28秒前
心灵美凝竹完成签到 ,获得积分10
29秒前
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966223
求助须知:如何正确求助?哪些是违规求助? 3511680
关于积分的说明 11159133
捐赠科研通 3246277
什么是DOI,文献DOI怎么找? 1793321
邀请新用户注册赠送积分活动 874347
科研通“疑难数据库(出版商)”最低求助积分说明 804343