Using Computational Simulations to Model Deleterious Variation and Genetic Load in Natural Populations

变化(天文学) 计算机科学 计算模型 遗传变异 生物 人工智能 遗传学 天体物理学 基因 物理
作者
Christopher C. Kyriazis,Jacqueline A. Robinson,Kirk E. Lohmueller
出处
期刊:The American Naturalist [The University of Chicago Press]
卷期号:202 (6): 737-752 被引量:33
标识
DOI:10.1086/726736
摘要

AbstractDeleterious genetic variation is abundant in wild populations, and understanding the ecological and conservation implications of such variation is an area of active research. Genomic methods are increasingly used to quantify the impacts of deleterious variation in natural populations; however, these approaches remain limited by an inability to accurately predict the selective and dominance effects of mutations. Computational simulations of deleterious variation offer a complementary tool that can help overcome these limitations, although such approaches have yet to be widely employed. In this perspective article, we aim to encourage ecological and conservation genomics researchers to adopt greater use of computational simulations to aid in deepening our understanding of deleterious variation in natural populations. We first provide an overview of the components of a simulation of deleterious variation, describing the key parameters involved in such models. Next, we discuss several approaches for validating simulation models. Finally, we compare and validate several recently proposed deleterious mutation models, demonstrating that models based on estimates of selection parameters from experimental systems are biased toward highly deleterious mutations. We describe a new model that is supported by multiple orthogonal lines of evidence and provide example scripts for implementing this model (https://github.com/ckyriazis/simulations_review).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
俏皮半凡发布了新的文献求助10
1秒前
1秒前
充电宝应助清秀的小刺猬采纳,获得10
1秒前
Hello应助诡异乐园采纳,获得30
2秒前
小C发布了新的文献求助10
3秒前
勤恳青亦发布了新的文献求助10
3秒前
3秒前
4秒前
远方发布了新的文献求助10
4秒前
潇涯应助一一采纳,获得10
4秒前
gnufgg完成签到,获得积分10
4秒前
4秒前
ethan完成签到,获得积分20
4秒前
英姑应助木槿采纳,获得10
5秒前
hh完成签到,获得积分10
5秒前
邓111111完成签到 ,获得积分10
5秒前
秋秋儿发布了新的文献求助10
6秒前
6秒前
6秒前
EWW完成签到,获得积分10
7秒前
善良的雨筠完成签到,获得积分10
7秒前
音吹完成签到,获得积分10
7秒前
CipherSage应助陈住气采纳,获得10
7秒前
8秒前
kelakola完成签到,获得积分10
8秒前
8秒前
斯文败类应助咖褐采纳,获得10
8秒前
hh发布了新的文献求助10
9秒前
科研通AI6应助Albert采纳,获得10
9秒前
wanci应助勤恳青亦采纳,获得10
9秒前
LL发布了新的文献求助10
9秒前
10秒前
笑忘书发布了新的文献求助10
10秒前
王多鱼发布了新的文献求助10
10秒前
HYH完成签到,获得积分10
11秒前
11秒前
11秒前
18863933521发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468825
求助须知:如何正确求助?哪些是违规求助? 4572157
关于积分的说明 14333943
捐赠科研通 4498964
什么是DOI,文献DOI怎么找? 2464789
邀请新用户注册赠送积分活动 1453376
关于科研通互助平台的介绍 1427939