Ensembles of Convolutional Neural Networks and Transformers for Polyp Segmentation

分割 计算机科学 人工智能 卷积神经网络 像素 模式识别(心理学) 深度学习 机器学习 图像分割 变压器 物理 量子力学 电压
作者
Loris Nanni,Carlo Fantozzi,Andrea Loreggia,Alessandra Lumini
出处
期刊:Sensors [MDPI AG]
卷期号:23 (10): 4688-4688 被引量:11
标识
DOI:10.3390/s23104688
摘要

In the realm of computer vision, semantic segmentation is the task of recognizing objects in images at the pixel level. This is done by performing a classification of each pixel. The task is complex and requires sophisticated skills and knowledge about the context to identify objects' boundaries. The importance of semantic segmentation in many domains is undisputed. In medical diagnostics, it simplifies the early detection of pathologies, thus mitigating the possible consequences. In this work, we provide a review of the literature on deep ensemble learning models for polyp segmentation and develop new ensembles based on convolutional neural networks and transformers. The development of an effective ensemble entails ensuring diversity between its components. To this end, we combined different models (HarDNet-MSEG, Polyp-PVT, and HSNet) trained with different data augmentation techniques, optimization methods, and learning rates, which we experimentally demonstrate to be useful to form a better ensemble. Most importantly, we introduce a new method to obtain the segmentation mask by averaging intermediate masks after the sigmoid layer. In our extensive experimental evaluation, the average performance of the proposed ensembles over five prominent datasets beat any other solution that we know of. Furthermore, the ensembles also performed better than the state-of-the-art on two of the five datasets, when individually considered, without having been specifically trained for them.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
曾德帅完成签到 ,获得积分10
2秒前
2秒前
挽风发布了新的文献求助10
2秒前
2秒前
现实的小熊猫完成签到,获得积分10
3秒前
微笑友容完成签到,获得积分10
3秒前
然大宝发布了新的文献求助10
5秒前
绿水菊发布了新的文献求助10
5秒前
脑洞疼应助lemon采纳,获得10
5秒前
5秒前
冷酷函发布了新的文献求助30
6秒前
慧1111111发布了新的文献求助30
6秒前
顾矜应助123采纳,获得10
8秒前
张世瑞发布了新的文献求助10
8秒前
完美世界应助丑丑阿采纳,获得10
9秒前
9秒前
研友_VZG7GZ应助zaphkiel采纳,获得20
9秒前
berg完成签到,获得积分10
10秒前
Lll发布了新的文献求助10
10秒前
dong完成签到,获得积分10
13秒前
墨倾池发布了新的文献求助10
13秒前
胡轩轩完成签到,获得积分20
14秒前
14秒前
14秒前
叶芷雪发布了新的文献求助10
16秒前
coco1关注了科研通微信公众号
17秒前
17秒前
18秒前
19秒前
丘比特应助ZXFFF采纳,获得10
19秒前
阿杕完成签到 ,获得积分10
19秒前
CodeCraft应助科研通管家采纳,获得10
20秒前
碧蓝难胜完成签到,获得积分10
20秒前
今后应助科研通管家采纳,获得10
20秒前
完美世界应助科研通管家采纳,获得10
20秒前
Orange应助科研通管家采纳,获得10
20秒前
CipherSage应助科研通管家采纳,获得10
20秒前
Henry应助科研通管家采纳,获得200
20秒前
爆米花应助科研通管家采纳,获得10
20秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233633
求助须知:如何正确求助?哪些是违规求助? 2880198
关于积分的说明 8214308
捐赠科研通 2547604
什么是DOI,文献DOI怎么找? 1377100
科研通“疑难数据库(出版商)”最低求助积分说明 647736
邀请新用户注册赠送积分活动 623173