亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Ensembles of Convolutional Neural Networks and Transformers for Polyp Segmentation

分割 计算机科学 人工智能 卷积神经网络 像素 模式识别(心理学) 深度学习 机器学习 图像分割 变压器 量子力学 物理 电压
作者
Loris Nanni,Carlo Fantozzi,Andrea Loreggia,Alessandra Lumini
出处
期刊:Sensors [MDPI AG]
卷期号:23 (10): 4688-4688 被引量:11
标识
DOI:10.3390/s23104688
摘要

In the realm of computer vision, semantic segmentation is the task of recognizing objects in images at the pixel level. This is done by performing a classification of each pixel. The task is complex and requires sophisticated skills and knowledge about the context to identify objects' boundaries. The importance of semantic segmentation in many domains is undisputed. In medical diagnostics, it simplifies the early detection of pathologies, thus mitigating the possible consequences. In this work, we provide a review of the literature on deep ensemble learning models for polyp segmentation and develop new ensembles based on convolutional neural networks and transformers. The development of an effective ensemble entails ensuring diversity between its components. To this end, we combined different models (HarDNet-MSEG, Polyp-PVT, and HSNet) trained with different data augmentation techniques, optimization methods, and learning rates, which we experimentally demonstrate to be useful to form a better ensemble. Most importantly, we introduce a new method to obtain the segmentation mask by averaging intermediate masks after the sigmoid layer. In our extensive experimental evaluation, the average performance of the proposed ensembles over five prominent datasets beat any other solution that we know of. Furthermore, the ensembles also performed better than the state-of-the-art on two of the five datasets, when individually considered, without having been specifically trained for them.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
19秒前
24秒前
安年完成签到 ,获得积分10
33秒前
56秒前
汉堡包应助王王碎冰冰采纳,获得10
1分钟前
1分钟前
555557发布了新的文献求助10
1分钟前
1分钟前
1分钟前
2分钟前
555557完成签到,获得积分10
2分钟前
2分钟前
2分钟前
王王碎冰冰关注了科研通微信公众号
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
天天快乐应助111采纳,获得20
3分钟前
FJXTY发布了新的文献求助10
3分钟前
3分钟前
3分钟前
111发布了新的文献求助20
3分钟前
bkagyin应助FJXTY采纳,获得10
3分钟前
牛黄完成签到 ,获得积分10
3分钟前
彭于晏应助迅速的岩采纳,获得10
3分钟前
3分钟前
3分钟前
赵赵发布了新的文献求助10
3分钟前
3分钟前
迅速的岩发布了新的文献求助10
3分钟前
赵赵完成签到,获得积分20
4分钟前
Willow完成签到,获得积分10
4分钟前
JamesPei应助赵赵采纳,获得10
4分钟前
研友_VZG7GZ应助轻松凌柏采纳,获得10
4分钟前
4分钟前
符寄云发布了新的文献求助10
4分钟前
充电宝应助yihuifa采纳,获得10
4分钟前
斯文败类应助符寄云采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482463
求助须知:如何正确求助?哪些是违规求助? 4583236
关于积分的说明 14389049
捐赠科研通 4512329
什么是DOI,文献DOI怎么找? 2472833
邀请新用户注册赠送积分活动 1459053
关于科研通互助平台的介绍 1432553