Ensembles of Convolutional Neural Networks and Transformers for Polyp Segmentation

分割 计算机科学 人工智能 卷积神经网络 像素 模式识别(心理学) 深度学习 机器学习 图像分割 变压器 物理 量子力学 电压
作者
Loris Nanni,Carlo Fantozzi,Andrea Loreggia,Alessandra Lumini
出处
期刊:Sensors [MDPI AG]
卷期号:23 (10): 4688-4688 被引量:11
标识
DOI:10.3390/s23104688
摘要

In the realm of computer vision, semantic segmentation is the task of recognizing objects in images at the pixel level. This is done by performing a classification of each pixel. The task is complex and requires sophisticated skills and knowledge about the context to identify objects' boundaries. The importance of semantic segmentation in many domains is undisputed. In medical diagnostics, it simplifies the early detection of pathologies, thus mitigating the possible consequences. In this work, we provide a review of the literature on deep ensemble learning models for polyp segmentation and develop new ensembles based on convolutional neural networks and transformers. The development of an effective ensemble entails ensuring diversity between its components. To this end, we combined different models (HarDNet-MSEG, Polyp-PVT, and HSNet) trained with different data augmentation techniques, optimization methods, and learning rates, which we experimentally demonstrate to be useful to form a better ensemble. Most importantly, we introduce a new method to obtain the segmentation mask by averaging intermediate masks after the sigmoid layer. In our extensive experimental evaluation, the average performance of the proposed ensembles over five prominent datasets beat any other solution that we know of. Furthermore, the ensembles also performed better than the state-of-the-art on two of the five datasets, when individually considered, without having been specifically trained for them.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
赵亚南发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
刚刚
stella发布了新的文献求助10
1秒前
tianxiangning发布了新的文献求助10
1秒前
Eig发布了新的文献求助30
1秒前
ding应助cici采纳,获得10
1秒前
1秒前
1秒前
孙帅完成签到,获得积分10
2秒前
切切完成签到,获得积分20
2秒前
yangling0124发布了新的文献求助10
3秒前
科研通AI6应助咸鱼采纳,获得10
3秒前
4秒前
4秒前
coco发布了新的文献求助10
4秒前
852应助view采纳,获得10
5秒前
爱笑万宝路关注了科研通微信公众号
5秒前
Orange应助禾苗采纳,获得10
5秒前
dj发布了新的文献求助10
5秒前
复方蛋酥卷完成签到,获得积分10
5秒前
北y关注了科研通微信公众号
5秒前
CCsci发布了新的文献求助10
7秒前
7秒前
土土完成签到,获得积分10
8秒前
shabbow完成签到,获得积分10
10秒前
幽默的元珊完成签到,获得积分10
10秒前
昱鱼七seven完成签到,获得积分10
10秒前
张若愚发布了新的文献求助10
10秒前
GY完成签到,获得积分10
11秒前
万能图书馆应助小叮当采纳,获得10
11秒前
zz发布了新的文献求助10
11秒前
鲤鱼曼香完成签到,获得积分10
12秒前
12秒前
12秒前
13秒前
13秒前
斯文败类应助文静向南采纳,获得10
14秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525966
求助须知:如何正确求助?哪些是违规求助? 4616113
关于积分的说明 14551945
捐赠科研通 4554358
什么是DOI,文献DOI怎么找? 2495803
邀请新用户注册赠送积分活动 1476217
关于科研通互助平台的介绍 1447879