SHGCN

计算机科学 超图 图形 卷积(计算机科学) 卷积神经网络 人工智能 深度学习 理论计算机科学 模式识别(心理学) 数据挖掘 人工神经网络 数学 离散数学
作者
Yi Wang,Di Zhu
标识
DOI:10.1145/3557918.3565866
摘要

Traffic flow prediction, as one of the prominent tasks in intelligent transportation systems, is challenging due to underlying complex spatiotemporal characteristics. Consideration of historical spatial and temporal dependencies is essential for the traffic prediction of a geographic unit for a future time period. Existing works mainly adopted graphs to represent the irregular layout of spatial units, where nodes are signal of spatial units and edges are link strengths between units. For contemporary deep learning based spatiotemporal prediction tasks, the temporal dependence can be well modeled via convolution neural network or recurrent neural network, and spatial dependence features are commonly captured using graph convolution networks. However, classic graph structures cannot fully represent the complex nature of spatial relationships in transportation networks, because the spatial pattern of a location might be influenced by multiple sets of contextual information simultaneously, while a graph edge can only describe the linkage between two nodes. In addition, most existing models ignore the synchronous dependence between temporal and spatial features, leading to a mismatch between the temporal and spatial features of a location. Based on such problems, a hypergraph-based deep learning model, namely synchronous hypergraph convolutional network (SHGCN), is proposed to better capture the complex relationships between spatial and temporal knowledge. A novel synchronous hypergraph cell (SH-Cell) is designed based on LSTM cells integrated in the form of a Seq2seq architecture. Then, we construct dynamic hypergraphs to capture the synchronous spatiotemporal dependence adaptively using SH-Cells. Experimental results demonstrate the superiority of SHGCN over well-known benchmarks on two real-world publicly-available traffic datasets. This research provides new insights for improving the traffic flow prediction accuracy and understanding complex spatiotemporal relationships towards a more reliable urban traffic management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ysm完成签到,获得积分10
3秒前
乐观的期待完成签到 ,获得积分10
4秒前
流念完成签到,获得积分10
4秒前
Andrew完成签到,获得积分10
4秒前
4秒前
Yifan2024应助Andrew采纳,获得10
8秒前
8秒前
10秒前
左丘幼旋1发布了新的文献求助10
11秒前
Angel完成签到 ,获得积分10
13秒前
Tin发布了新的文献求助10
13秒前
小巧的烤鸡完成签到 ,获得积分10
16秒前
爱静静应助兔子采纳,获得10
20秒前
激情的代曼完成签到,获得积分10
21秒前
xff关闭了xff文献求助
23秒前
Lucas应助多情如容采纳,获得10
24秒前
boom发布了新的文献求助10
28秒前
KeYang完成签到,获得积分10
29秒前
Akim应助科研通管家采纳,获得10
30秒前
英俊的铭应助科研通管家采纳,获得10
30秒前
顾矜应助科研通管家采纳,获得10
30秒前
31秒前
orixero应助科研通管家采纳,获得10
31秒前
英姑应助科研通管家采纳,获得10
31秒前
呜呼完成签到 ,获得积分20
33秒前
arisfield完成签到,获得积分10
33秒前
34秒前
南笺完成签到 ,获得积分10
35秒前
万能图书馆应助louis136116采纳,获得10
37秒前
呜呼关注了科研通微信公众号
37秒前
斯文尔岚发布了新的文献求助20
38秒前
steven完成签到 ,获得积分10
40秒前
xff发布了新的文献求助10
40秒前
直率芷巧发布了新的文献求助10
41秒前
41秒前
42秒前
44秒前
louis136116完成签到,获得积分10
45秒前
梦影发布了新的文献求助10
46秒前
fang发布了新的文献求助10
47秒前
高分求助中
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Play from birth to twelve: Contexts, perspectives, and meanings – 3rd Edition 300
Equality: What It Means and Why It Matters 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3350888
求助须知:如何正确求助?哪些是违规求助? 2976477
关于积分的说明 8675121
捐赠科研通 2657638
什么是DOI,文献DOI怎么找? 1455181
科研通“疑难数据库(出版商)”最低求助积分说明 673736
邀请新用户注册赠送积分活动 664225