亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SHGCN

计算机科学 超图 图形 卷积(计算机科学) 卷积神经网络 人工智能 深度学习 理论计算机科学 模式识别(心理学) 数据挖掘 人工神经网络 数学 离散数学
作者
Yi Wang,Di Zhu
标识
DOI:10.1145/3557918.3565866
摘要

Traffic flow prediction, as one of the prominent tasks in intelligent transportation systems, is challenging due to underlying complex spatiotemporal characteristics. Consideration of historical spatial and temporal dependencies is essential for the traffic prediction of a geographic unit for a future time period. Existing works mainly adopted graphs to represent the irregular layout of spatial units, where nodes are signal of spatial units and edges are link strengths between units. For contemporary deep learning based spatiotemporal prediction tasks, the temporal dependence can be well modeled via convolution neural network or recurrent neural network, and spatial dependence features are commonly captured using graph convolution networks. However, classic graph structures cannot fully represent the complex nature of spatial relationships in transportation networks, because the spatial pattern of a location might be influenced by multiple sets of contextual information simultaneously, while a graph edge can only describe the linkage between two nodes. In addition, most existing models ignore the synchronous dependence between temporal and spatial features, leading to a mismatch between the temporal and spatial features of a location. Based on such problems, a hypergraph-based deep learning model, namely synchronous hypergraph convolutional network (SHGCN), is proposed to better capture the complex relationships between spatial and temporal knowledge. A novel synchronous hypergraph cell (SH-Cell) is designed based on LSTM cells integrated in the form of a Seq2seq architecture. Then, we construct dynamic hypergraphs to capture the synchronous spatiotemporal dependence adaptively using SH-Cells. Experimental results demonstrate the superiority of SHGCN over well-known benchmarks on two real-world publicly-available traffic datasets. This research provides new insights for improving the traffic flow prediction accuracy and understanding complex spatiotemporal relationships towards a more reliable urban traffic management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
Cloud发布了新的文献求助10
16秒前
mmyhn发布了新的文献求助10
19秒前
勇毅前行完成签到,获得积分10
19秒前
身法马可波罗完成签到 ,获得积分10
20秒前
Cloud完成签到,获得积分10
22秒前
29秒前
玉玉发布了新的文献求助10
32秒前
39秒前
SciGPT应助annis采纳,获得10
41秒前
44秒前
玉玉完成签到,获得积分10
46秒前
开心的瘦子完成签到,获得积分10
47秒前
51秒前
量子星尘发布了新的文献求助10
52秒前
annis发布了新的文献求助10
54秒前
55秒前
mc小胖羊发布了新的文献求助10
57秒前
58秒前
1分钟前
1分钟前
哈哈哈完成签到,获得积分10
1分钟前
vvvvvvld完成签到,获得积分20
1分钟前
1分钟前
Pauline发布了新的文献求助10
1分钟前
夕瑶摇啊发布了新的文献求助10
1分钟前
vvvvvvld发布了新的文献求助10
1分钟前
科研通AI2S应助夕瑶摇啊采纳,获得10
1分钟前
满怀信心完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
iorpi发布了新的文献求助10
1分钟前
1分钟前
那奇泡芙发布了新的文献求助10
1分钟前
巫马百招发布了新的文献求助10
1分钟前
2分钟前
Hart完成签到 ,获得积分0
2分钟前
蓝色的鱼发布了新的文献求助10
2分钟前
那奇泡芙完成签到,获得积分20
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
Introduction to Early Childhood Education 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418250
求助须知:如何正确求助?哪些是违规求助? 4533960
关于积分的说明 14142924
捐赠科研通 4450231
什么是DOI,文献DOI怎么找? 2441133
邀请新用户注册赠送积分活动 1432869
关于科研通互助平台的介绍 1410170