SHGCN

计算机科学 超图 图形 卷积(计算机科学) 卷积神经网络 人工智能 深度学习 理论计算机科学 模式识别(心理学) 数据挖掘 人工神经网络 数学 离散数学
作者
Yi Wang,Di Zhu
标识
DOI:10.1145/3557918.3565866
摘要

Traffic flow prediction, as one of the prominent tasks in intelligent transportation systems, is challenging due to underlying complex spatiotemporal characteristics. Consideration of historical spatial and temporal dependencies is essential for the traffic prediction of a geographic unit for a future time period. Existing works mainly adopted graphs to represent the irregular layout of spatial units, where nodes are signal of spatial units and edges are link strengths between units. For contemporary deep learning based spatiotemporal prediction tasks, the temporal dependence can be well modeled via convolution neural network or recurrent neural network, and spatial dependence features are commonly captured using graph convolution networks. However, classic graph structures cannot fully represent the complex nature of spatial relationships in transportation networks, because the spatial pattern of a location might be influenced by multiple sets of contextual information simultaneously, while a graph edge can only describe the linkage between two nodes. In addition, most existing models ignore the synchronous dependence between temporal and spatial features, leading to a mismatch between the temporal and spatial features of a location. Based on such problems, a hypergraph-based deep learning model, namely synchronous hypergraph convolutional network (SHGCN), is proposed to better capture the complex relationships between spatial and temporal knowledge. A novel synchronous hypergraph cell (SH-Cell) is designed based on LSTM cells integrated in the form of a Seq2seq architecture. Then, we construct dynamic hypergraphs to capture the synchronous spatiotemporal dependence adaptively using SH-Cells. Experimental results demonstrate the superiority of SHGCN over well-known benchmarks on two real-world publicly-available traffic datasets. This research provides new insights for improving the traffic flow prediction accuracy and understanding complex spatiotemporal relationships towards a more reliable urban traffic management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
踏实凡阳完成签到,获得积分10
4秒前
5秒前
酷波er应助zlenetr采纳,获得10
5秒前
Owen应助MZ采纳,获得10
6秒前
x夏天完成签到 ,获得积分10
7秒前
斯文败类应助科研废采纳,获得10
7秒前
8秒前
underoos完成签到 ,获得积分10
9秒前
11秒前
lch完成签到,获得积分10
11秒前
12秒前
12345tty发布了新的文献求助10
13秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
椰子壳发布了新的文献求助10
15秒前
lei发布了新的文献求助10
18秒前
细心映菱发布了新的文献求助10
18秒前
Liu应助读书酱采纳,获得30
21秒前
22秒前
善良傲珊完成签到,获得积分10
23秒前
23秒前
冷HorToo完成签到 ,获得积分10
24秒前
Surge发布了新的文献求助20
25秒前
魔幻大有完成签到 ,获得积分10
26秒前
垃圾桶发布了新的文献求助10
26秒前
26秒前
传奇3应助WXX采纳,获得10
26秒前
27秒前
热心市民小红花应助丢丢采纳,获得10
31秒前
grumpysquirel完成签到,获得积分10
31秒前
啦啦啦发布了新的文献求助10
31秒前
31秒前
道友且慢发布了新的文献求助20
32秒前
天竹子发布了新的文献求助10
32秒前
Longfenzhong完成签到,获得积分10
33秒前
江维维豆奶完成签到 ,获得积分10
35秒前
菜鸟完成签到,获得积分10
36秒前
孳孳为善6387完成签到,获得积分10
37秒前
酷波er应助庾稀采纳,获得10
37秒前
jihenyouai0213完成签到,获得积分10
38秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959759
求助须知:如何正确求助?哪些是违规求助? 3506016
关于积分的说明 11127457
捐赠科研通 3237969
什么是DOI,文献DOI怎么找? 1789411
邀请新用户注册赠送积分活动 871741
科研通“疑难数据库(出版商)”最低求助积分说明 803019