SHGCN

计算机科学 超图 图形 卷积(计算机科学) 卷积神经网络 人工智能 深度学习 理论计算机科学 模式识别(心理学) 数据挖掘 人工神经网络 数学 离散数学
作者
Yi Wang,Di Zhu
标识
DOI:10.1145/3557918.3565866
摘要

Traffic flow prediction, as one of the prominent tasks in intelligent transportation systems, is challenging due to underlying complex spatiotemporal characteristics. Consideration of historical spatial and temporal dependencies is essential for the traffic prediction of a geographic unit for a future time period. Existing works mainly adopted graphs to represent the irregular layout of spatial units, where nodes are signal of spatial units and edges are link strengths between units. For contemporary deep learning based spatiotemporal prediction tasks, the temporal dependence can be well modeled via convolution neural network or recurrent neural network, and spatial dependence features are commonly captured using graph convolution networks. However, classic graph structures cannot fully represent the complex nature of spatial relationships in transportation networks, because the spatial pattern of a location might be influenced by multiple sets of contextual information simultaneously, while a graph edge can only describe the linkage between two nodes. In addition, most existing models ignore the synchronous dependence between temporal and spatial features, leading to a mismatch between the temporal and spatial features of a location. Based on such problems, a hypergraph-based deep learning model, namely synchronous hypergraph convolutional network (SHGCN), is proposed to better capture the complex relationships between spatial and temporal knowledge. A novel synchronous hypergraph cell (SH-Cell) is designed based on LSTM cells integrated in the form of a Seq2seq architecture. Then, we construct dynamic hypergraphs to capture the synchronous spatiotemporal dependence adaptively using SH-Cells. Experimental results demonstrate the superiority of SHGCN over well-known benchmarks on two real-world publicly-available traffic datasets. This research provides new insights for improving the traffic flow prediction accuracy and understanding complex spatiotemporal relationships towards a more reliable urban traffic management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
桔子酱完成签到,获得积分10
刚刚
刚刚
哇哦发布了新的文献求助10
1秒前
十三完成签到,获得积分10
1秒前
1秒前
淡定风华发布了新的文献求助10
1秒前
引商刻羽发布了新的文献求助30
2秒前
11发布了新的文献求助10
2秒前
3秒前
结实旭尧完成签到 ,获得积分10
3秒前
3秒前
freebird应助温柔采纳,获得10
3秒前
nihaoxiaoai发布了新的文献求助10
3秒前
3秒前
3秒前
24813016发布了新的文献求助10
3秒前
4秒前
嗯哼发布了新的文献求助10
4秒前
shanjianjie发布了新的文献求助30
4秒前
量子星尘发布了新的文献求助10
4秒前
朱浩泽完成签到,获得积分10
5秒前
qq大魔王发布了新的文献求助50
5秒前
柏拉图发布了新的文献求助10
5秒前
5秒前
6秒前
nekobeing发布了新的文献求助50
6秒前
LJR完成签到,获得积分20
7秒前
7秒前
Mathilda完成签到,获得积分10
7秒前
8秒前
10秒前
缥缈尔丝发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
Demon发布了新的文献求助10
10秒前
嘿嘿完成签到,获得积分10
10秒前
雨醉东风发布了新的文献求助10
10秒前
11秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619809
求助须知:如何正确求助?哪些是违规求助? 4704349
关于积分的说明 14927602
捐赠科研通 4760460
什么是DOI,文献DOI怎么找? 2550657
邀请新用户注册赠送积分活动 1513453
关于科研通互助平台的介绍 1474498