SHGCN

计算机科学 超图 图形 卷积(计算机科学) 卷积神经网络 人工智能 深度学习 理论计算机科学 模式识别(心理学) 数据挖掘 人工神经网络 数学 离散数学
作者
Yi Wang,Di Zhu
标识
DOI:10.1145/3557918.3565866
摘要

Traffic flow prediction, as one of the prominent tasks in intelligent transportation systems, is challenging due to underlying complex spatiotemporal characteristics. Consideration of historical spatial and temporal dependencies is essential for the traffic prediction of a geographic unit for a future time period. Existing works mainly adopted graphs to represent the irregular layout of spatial units, where nodes are signal of spatial units and edges are link strengths between units. For contemporary deep learning based spatiotemporal prediction tasks, the temporal dependence can be well modeled via convolution neural network or recurrent neural network, and spatial dependence features are commonly captured using graph convolution networks. However, classic graph structures cannot fully represent the complex nature of spatial relationships in transportation networks, because the spatial pattern of a location might be influenced by multiple sets of contextual information simultaneously, while a graph edge can only describe the linkage between two nodes. In addition, most existing models ignore the synchronous dependence between temporal and spatial features, leading to a mismatch between the temporal and spatial features of a location. Based on such problems, a hypergraph-based deep learning model, namely synchronous hypergraph convolutional network (SHGCN), is proposed to better capture the complex relationships between spatial and temporal knowledge. A novel synchronous hypergraph cell (SH-Cell) is designed based on LSTM cells integrated in the form of a Seq2seq architecture. Then, we construct dynamic hypergraphs to capture the synchronous spatiotemporal dependence adaptively using SH-Cells. Experimental results demonstrate the superiority of SHGCN over well-known benchmarks on two real-world publicly-available traffic datasets. This research provides new insights for improving the traffic flow prediction accuracy and understanding complex spatiotemporal relationships towards a more reliable urban traffic management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZhouZhoukkk完成签到,获得积分10
刚刚
Ljh发布了新的文献求助10
刚刚
华仔应助linda采纳,获得10
刚刚
1秒前
self2008发布了新的文献求助10
2秒前
2秒前
2秒前
恢复出厂设置完成签到,获得积分10
3秒前
传统的冰海完成签到,获得积分10
3秒前
科目三应助holly采纳,获得10
3秒前
4秒前
勤恳以寒发布了新的文献求助10
4秒前
aaa关注了科研通微信公众号
5秒前
5秒前
搜集达人应助sc采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
6秒前
天天快乐应助平常如花采纳,获得10
6秒前
没头脑姑娘完成签到,获得积分10
6秒前
着急的凌青完成签到 ,获得积分10
6秒前
self2008完成签到,获得积分10
6秒前
hugh完成签到,获得积分10
9秒前
shuiyu发布了新的文献求助10
9秒前
黎L完成签到,获得积分10
10秒前
10秒前
11秒前
刘五州发布了新的文献求助10
11秒前
幽默的绿草完成签到,获得积分10
11秒前
Akim应助战舞飞扬采纳,获得10
11秒前
体贴代容发布了新的文献求助10
12秒前
金金发布了新的文献求助10
12秒前
13秒前
脑洞疼应助甜甜戎采纳,获得10
13秒前
13秒前
14秒前
遇见完成签到,获得积分10
14秒前
14秒前
shuiyu完成签到,获得积分10
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684791
求助须知:如何正确求助?哪些是违规求助? 5038954
关于积分的说明 15185395
捐赠科研通 4843938
什么是DOI,文献DOI怎么找? 2597034
邀请新用户注册赠送积分活动 1549618
关于科研通互助平台的介绍 1508109