亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SHGCN

计算机科学 超图 图形 卷积(计算机科学) 卷积神经网络 人工智能 深度学习 理论计算机科学 模式识别(心理学) 数据挖掘 人工神经网络 数学 离散数学
作者
Yi Wang,Di Zhu
标识
DOI:10.1145/3557918.3565866
摘要

Traffic flow prediction, as one of the prominent tasks in intelligent transportation systems, is challenging due to underlying complex spatiotemporal characteristics. Consideration of historical spatial and temporal dependencies is essential for the traffic prediction of a geographic unit for a future time period. Existing works mainly adopted graphs to represent the irregular layout of spatial units, where nodes are signal of spatial units and edges are link strengths between units. For contemporary deep learning based spatiotemporal prediction tasks, the temporal dependence can be well modeled via convolution neural network or recurrent neural network, and spatial dependence features are commonly captured using graph convolution networks. However, classic graph structures cannot fully represent the complex nature of spatial relationships in transportation networks, because the spatial pattern of a location might be influenced by multiple sets of contextual information simultaneously, while a graph edge can only describe the linkage between two nodes. In addition, most existing models ignore the synchronous dependence between temporal and spatial features, leading to a mismatch between the temporal and spatial features of a location. Based on such problems, a hypergraph-based deep learning model, namely synchronous hypergraph convolutional network (SHGCN), is proposed to better capture the complex relationships between spatial and temporal knowledge. A novel synchronous hypergraph cell (SH-Cell) is designed based on LSTM cells integrated in the form of a Seq2seq architecture. Then, we construct dynamic hypergraphs to capture the synchronous spatiotemporal dependence adaptively using SH-Cells. Experimental results demonstrate the superiority of SHGCN over well-known benchmarks on two real-world publicly-available traffic datasets. This research provides new insights for improving the traffic flow prediction accuracy and understanding complex spatiotemporal relationships towards a more reliable urban traffic management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷炫灰狼发布了新的文献求助10
3秒前
5秒前
Criminology34应助科研通管家采纳,获得10
6秒前
Criminology34应助科研通管家采纳,获得10
6秒前
12秒前
16秒前
多乐多发布了新的文献求助10
19秒前
57秒前
比格大王完成签到,获得积分10
57秒前
1分钟前
tongtong12345发布了新的文献求助40
1分钟前
1分钟前
冷静尔芙发布了新的文献求助10
1分钟前
1分钟前
Otter完成签到,获得积分10
1分钟前
冷静尔芙完成签到,获得积分10
1分钟前
今后应助求求好心人采纳,获得10
1分钟前
潇洒诗槐完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
潇洒诗槐发布了新的文献求助10
1分钟前
温暖的乐蓉完成签到,获得积分10
2分钟前
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
长尾巴的人类完成签到,获得积分10
2分钟前
2分钟前
ada发布了新的文献求助10
2分钟前
比格大王发布了新的文献求助20
2分钟前
所所应助郭楠楠采纳,获得10
3分钟前
Lucas应助郭楠楠采纳,获得10
3分钟前
Hello应助郭楠楠采纳,获得10
3分钟前
3分钟前
lixuebin完成签到 ,获得积分10
3分钟前
共享精神应助潇洒诗槐采纳,获得10
3分钟前
3分钟前
3分钟前
初晴完成签到 ,获得积分10
3分钟前
潇洒诗槐发布了新的文献求助10
3分钟前
SciGPT应助Developing_human采纳,获得10
3分钟前
万能图书馆应助ada采纳,获得10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664438
求助须知:如何正确求助?哪些是违规求助? 4861169
关于积分的说明 15107642
捐赠科研通 4822995
什么是DOI,文献DOI怎么找? 2581824
邀请新用户注册赠送积分活动 1536001
关于科研通互助平台的介绍 1494359