SHGCN

计算机科学 超图 图形 卷积(计算机科学) 卷积神经网络 人工智能 深度学习 理论计算机科学 模式识别(心理学) 数据挖掘 人工神经网络 数学 离散数学
作者
Yi Wang,Di Zhu
标识
DOI:10.1145/3557918.3565866
摘要

Traffic flow prediction, as one of the prominent tasks in intelligent transportation systems, is challenging due to underlying complex spatiotemporal characteristics. Consideration of historical spatial and temporal dependencies is essential for the traffic prediction of a geographic unit for a future time period. Existing works mainly adopted graphs to represent the irregular layout of spatial units, where nodes are signal of spatial units and edges are link strengths between units. For contemporary deep learning based spatiotemporal prediction tasks, the temporal dependence can be well modeled via convolution neural network or recurrent neural network, and spatial dependence features are commonly captured using graph convolution networks. However, classic graph structures cannot fully represent the complex nature of spatial relationships in transportation networks, because the spatial pattern of a location might be influenced by multiple sets of contextual information simultaneously, while a graph edge can only describe the linkage between two nodes. In addition, most existing models ignore the synchronous dependence between temporal and spatial features, leading to a mismatch between the temporal and spatial features of a location. Based on such problems, a hypergraph-based deep learning model, namely synchronous hypergraph convolutional network (SHGCN), is proposed to better capture the complex relationships between spatial and temporal knowledge. A novel synchronous hypergraph cell (SH-Cell) is designed based on LSTM cells integrated in the form of a Seq2seq architecture. Then, we construct dynamic hypergraphs to capture the synchronous spatiotemporal dependence adaptively using SH-Cells. Experimental results demonstrate the superiority of SHGCN over well-known benchmarks on two real-world publicly-available traffic datasets. This research provides new insights for improving the traffic flow prediction accuracy and understanding complex spatiotemporal relationships towards a more reliable urban traffic management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
maclogos发布了新的文献求助10
刚刚
大模型应助QQ采纳,获得10
2秒前
哈哈哈完成签到,获得积分10
2秒前
2秒前
Lucas应助gege采纳,获得10
3秒前
3秒前
4秒前
香蕉觅云应助幸福的雪枫采纳,获得10
5秒前
ycxlb完成签到,获得积分10
7秒前
科目三应助谷云采纳,获得10
7秒前
小白完成签到,获得积分10
8秒前
华仔应助rui采纳,获得10
8秒前
8秒前
尹幼蓉完成签到,获得积分10
9秒前
10秒前
www发布了新的文献求助10
10秒前
嘒彼星发布了新的文献求助10
10秒前
YOYORosey发布了新的文献求助10
10秒前
Jasper应助沉钧采纳,获得10
11秒前
bkagyin应助牛马学生采纳,获得10
12秒前
小胖卷毛完成签到,获得积分10
12秒前
眯眯眼的钢笔完成签到,获得积分10
12秒前
郭擎擎完成签到,获得积分10
13秒前
123567发布了新的文献求助10
13秒前
14秒前
14秒前
肥奇力应助Niki采纳,获得10
14秒前
14秒前
15秒前
共享精神应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
SJJ应助科研通管家采纳,获得10
15秒前
所所应助咕咕采纳,获得20
16秒前
16秒前
orixero应助科研通管家采纳,获得10
16秒前
彭于晏应助科研通管家采纳,获得30
16秒前
香蕉觅云应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得30
16秒前
英姑应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637553
求助须知:如何正确求助?哪些是违规求助? 4743563
关于积分的说明 14999628
捐赠科研通 4795653
什么是DOI,文献DOI怎么找? 2562146
邀请新用户注册赠送积分活动 1521595
关于科研通互助平台的介绍 1481573