亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SHGCN

计算机科学 超图 图形 卷积(计算机科学) 卷积神经网络 人工智能 深度学习 理论计算机科学 模式识别(心理学) 数据挖掘 人工神经网络 数学 离散数学
作者
Yi Wang,Di Zhu
标识
DOI:10.1145/3557918.3565866
摘要

Traffic flow prediction, as one of the prominent tasks in intelligent transportation systems, is challenging due to underlying complex spatiotemporal characteristics. Consideration of historical spatial and temporal dependencies is essential for the traffic prediction of a geographic unit for a future time period. Existing works mainly adopted graphs to represent the irregular layout of spatial units, where nodes are signal of spatial units and edges are link strengths between units. For contemporary deep learning based spatiotemporal prediction tasks, the temporal dependence can be well modeled via convolution neural network or recurrent neural network, and spatial dependence features are commonly captured using graph convolution networks. However, classic graph structures cannot fully represent the complex nature of spatial relationships in transportation networks, because the spatial pattern of a location might be influenced by multiple sets of contextual information simultaneously, while a graph edge can only describe the linkage between two nodes. In addition, most existing models ignore the synchronous dependence between temporal and spatial features, leading to a mismatch between the temporal and spatial features of a location. Based on such problems, a hypergraph-based deep learning model, namely synchronous hypergraph convolutional network (SHGCN), is proposed to better capture the complex relationships between spatial and temporal knowledge. A novel synchronous hypergraph cell (SH-Cell) is designed based on LSTM cells integrated in the form of a Seq2seq architecture. Then, we construct dynamic hypergraphs to capture the synchronous spatiotemporal dependence adaptively using SH-Cells. Experimental results demonstrate the superiority of SHGCN over well-known benchmarks on two real-world publicly-available traffic datasets. This research provides new insights for improving the traffic flow prediction accuracy and understanding complex spatiotemporal relationships towards a more reliable urban traffic management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Ryan完成签到 ,获得积分10
4秒前
rebron应助科研通管家采纳,获得100
4秒前
11秒前
WGR12138完成签到 ,获得积分10
15秒前
27秒前
30秒前
31秒前
33秒前
34秒前
脑洞疼应助lin采纳,获得10
34秒前
体贴雪碧发布了新的文献求助10
35秒前
立夏完成签到,获得积分10
38秒前
CipherSage应助夜晚有三年采纳,获得10
40秒前
41秒前
小马甲应助体贴雪碧采纳,获得10
45秒前
zzz发布了新的文献求助30
48秒前
健忘的溪灵完成签到 ,获得积分10
50秒前
zzgpku完成签到,获得积分0
51秒前
53秒前
53秒前
iook完成签到,获得积分20
54秒前
iook发布了新的文献求助10
56秒前
llllissa发布了新的文献求助10
58秒前
量子星尘发布了新的文献求助150
59秒前
1分钟前
Once发布了新的文献求助10
1分钟前
CipherSage应助iook采纳,获得10
1分钟前
minhdh完成签到,获得积分10
1分钟前
Jasper应助Clara采纳,获得30
1分钟前
科研通AI5应助llllissa采纳,获得10
1分钟前
浮游应助Once采纳,获得10
1分钟前
小波完成签到 ,获得积分10
1分钟前
1分钟前
zzz完成签到,获得积分20
1分钟前
Clara发布了新的文献求助30
1分钟前
xiaozou55完成签到 ,获得积分10
1分钟前
1分钟前
快乐芷荷完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4952250
求助须知:如何正确求助?哪些是违规求助? 4215044
关于积分的说明 13110793
捐赠科研通 3996875
什么是DOI,文献DOI怎么找? 2187683
邀请新用户注册赠送积分活动 1202932
关于科研通互助平台的介绍 1115710