SHGCN

计算机科学 超图 图形 卷积(计算机科学) 卷积神经网络 人工智能 深度学习 理论计算机科学 模式识别(心理学) 数据挖掘 人工神经网络 数学 离散数学
作者
Yi Wang,Di Zhu
标识
DOI:10.1145/3557918.3565866
摘要

Traffic flow prediction, as one of the prominent tasks in intelligent transportation systems, is challenging due to underlying complex spatiotemporal characteristics. Consideration of historical spatial and temporal dependencies is essential for the traffic prediction of a geographic unit for a future time period. Existing works mainly adopted graphs to represent the irregular layout of spatial units, where nodes are signal of spatial units and edges are link strengths between units. For contemporary deep learning based spatiotemporal prediction tasks, the temporal dependence can be well modeled via convolution neural network or recurrent neural network, and spatial dependence features are commonly captured using graph convolution networks. However, classic graph structures cannot fully represent the complex nature of spatial relationships in transportation networks, because the spatial pattern of a location might be influenced by multiple sets of contextual information simultaneously, while a graph edge can only describe the linkage between two nodes. In addition, most existing models ignore the synchronous dependence between temporal and spatial features, leading to a mismatch between the temporal and spatial features of a location. Based on such problems, a hypergraph-based deep learning model, namely synchronous hypergraph convolutional network (SHGCN), is proposed to better capture the complex relationships between spatial and temporal knowledge. A novel synchronous hypergraph cell (SH-Cell) is designed based on LSTM cells integrated in the form of a Seq2seq architecture. Then, we construct dynamic hypergraphs to capture the synchronous spatiotemporal dependence adaptively using SH-Cells. Experimental results demonstrate the superiority of SHGCN over well-known benchmarks on two real-world publicly-available traffic datasets. This research provides new insights for improving the traffic flow prediction accuracy and understanding complex spatiotemporal relationships towards a more reliable urban traffic management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王小胖完成签到,获得积分20
1秒前
CScs25完成签到 ,获得积分10
1秒前
1秒前
小李发布了新的文献求助10
1秒前
jingmishensi发布了新的文献求助10
2秒前
科研通AI6应助大气怜烟采纳,获得10
2秒前
2秒前
小乐儿~完成签到,获得积分10
2秒前
2秒前
灵巧鑫发布了新的文献求助10
3秒前
zzr123发布了新的文献求助10
3秒前
3秒前
3秒前
曦梦源完成签到,获得积分10
3秒前
共享精神应助飞快的代天采纳,获得10
4秒前
白华苍松发布了新的文献求助10
4秒前
Hyc28441711发布了新的文献求助10
4秒前
一问三不知先生完成签到,获得积分10
4秒前
春风沂水发布了新的文献求助40
5秒前
云端梦境发布了新的文献求助10
5秒前
6秒前
6秒前
奇怪的茶叶菌完成签到,获得积分10
6秒前
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
Owen应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
7秒前
orixero应助科研通管家采纳,获得10
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
天天快乐应助科研通管家采纳,获得10
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
Dali应助科研通管家采纳,获得10
8秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587388
求助须知:如何正确求助?哪些是违规求助? 4670503
关于积分的说明 14783142
捐赠科研通 4622601
什么是DOI,文献DOI怎么找? 2531265
邀请新用户注册赠送积分活动 1499954
关于科研通互助平台的介绍 1468066