SHGCN

计算机科学 超图 图形 卷积(计算机科学) 卷积神经网络 人工智能 深度学习 理论计算机科学 模式识别(心理学) 数据挖掘 人工神经网络 数学 离散数学
作者
Yi Wang,Di Zhu
标识
DOI:10.1145/3557918.3565866
摘要

Traffic flow prediction, as one of the prominent tasks in intelligent transportation systems, is challenging due to underlying complex spatiotemporal characteristics. Consideration of historical spatial and temporal dependencies is essential for the traffic prediction of a geographic unit for a future time period. Existing works mainly adopted graphs to represent the irregular layout of spatial units, where nodes are signal of spatial units and edges are link strengths between units. For contemporary deep learning based spatiotemporal prediction tasks, the temporal dependence can be well modeled via convolution neural network or recurrent neural network, and spatial dependence features are commonly captured using graph convolution networks. However, classic graph structures cannot fully represent the complex nature of spatial relationships in transportation networks, because the spatial pattern of a location might be influenced by multiple sets of contextual information simultaneously, while a graph edge can only describe the linkage between two nodes. In addition, most existing models ignore the synchronous dependence between temporal and spatial features, leading to a mismatch between the temporal and spatial features of a location. Based on such problems, a hypergraph-based deep learning model, namely synchronous hypergraph convolutional network (SHGCN), is proposed to better capture the complex relationships between spatial and temporal knowledge. A novel synchronous hypergraph cell (SH-Cell) is designed based on LSTM cells integrated in the form of a Seq2seq architecture. Then, we construct dynamic hypergraphs to capture the synchronous spatiotemporal dependence adaptively using SH-Cells. Experimental results demonstrate the superiority of SHGCN over well-known benchmarks on two real-world publicly-available traffic datasets. This research provides new insights for improving the traffic flow prediction accuracy and understanding complex spatiotemporal relationships towards a more reliable urban traffic management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
半夏给雾里看花水中望月的求助进行了留言
1秒前
yy完成签到,获得积分20
1秒前
2秒前
菲菲呀发布了新的文献求助10
2秒前
端庄纸飞机完成签到,获得积分10
2秒前
shiyi完成签到,获得积分10
2秒前
3秒前
Cast_Lappland完成签到,获得积分10
3秒前
CipherSage应助颖南婉采纳,获得10
3秒前
懒羊羊发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
Ma完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
michen发布了新的文献求助10
5秒前
5秒前
ding应助urologywang采纳,获得30
5秒前
李健的小迷弟应助刘克采纳,获得10
6秒前
6秒前
香蕉觅云应助周美言采纳,获得10
6秒前
7秒前
可爱的函函应助YZQ采纳,获得30
8秒前
8秒前
77发布了新的文献求助10
9秒前
ffffwj2024发布了新的文献求助10
9秒前
英俊的铭应助道鹏采纳,获得10
10秒前
Ava应助菲菲呀采纳,获得10
11秒前
小璟发布了新的文献求助10
13秒前
13秒前
搞怪小凡完成签到 ,获得积分10
13秒前
13秒前
浮生绘发布了新的文献求助10
14秒前
CipherSage应助77采纳,获得10
14秒前
15秒前
日月木水发布了新的文献求助10
15秒前
15秒前
1101592875发布了新的文献求助10
16秒前
友好白凡发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675283
求助须知:如何正确求助?哪些是违规求助? 4945244
关于积分的说明 15152572
捐赠科研通 4834559
什么是DOI,文献DOI怎么找? 2589536
邀请新用户注册赠送积分活动 1543243
关于科研通互助平台的介绍 1501110