Development of machine learning models for the prediction of the compressive strength of calcium-based geopolymers

抗压强度 固化(化学) 氧化钙 人工神经网络 反向 均方误差 近似误差 材料科学 聚合物 预测建模 决定系数 计算机科学 机器学习 数学 算法 复合材料 统计 冶金 几何学
作者
Wangwen Huo,Zhiduo Zhu,He Sun,Borui Ma,Liu Yang
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:380: 135159-135159 被引量:50
标识
DOI:10.1016/j.jclepro.2022.135159
摘要

Compressive strength is an important mechanical index that determines the mixture design of geopolymer, and its accurate prediction is essential. The existing experiment-based and statistical methods are time-consuming, labor-intensive and inaccurate. This study aims to develop an effective, reliable and interpretable machine learning (ML) model for predicting the compressive strength of calcium-based geopolymers. Feature engineering was constructed with molar ratios of raw material oxide composition, curing system, and mixing design. A total of eight algorithms in three types, traditional ML algorithms, integrated tree-based ML algorithms, and deep neural network algorithm, were employed to predict the compressive strength, and their differences, advantages, and disadvantages were compared. The importance of input variables in model training was evaluated. The contribution and influence pattern of input features on the development of compressive strength were revealed using the SHapley Additive exPlanations (SHAP) and inverse prediction. The results demonstrate that among the eight models proposed, the XGB model had the highest prediction accuracy (91%) and the lowest root mean squared error (3.85 MPa). Based on the importance analysis and the SHAP value, the parameters that had the greatest impact on the compressive strength were curing age, n(H2O)/n(Na2O), curing temperature, n(SiO2)/n(CaO) and the mass ratio of alkali activation solution to solid powder (L/S). The effects of input features on the compressive strength development of calcium-based geopolymers captured by SHAP and inverse predictions based on the best predictive model were consistent with the experimental results and theoretical understanding. The research in this paper facilitates the rapid prediction, improvement and optimization of the proportioning design and application of calcium-based geopolymers, and also provides a theoretical basis for the utilization of industrial and construction waste, in line with sustainable and low-carbon development strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
mysci完成签到,获得积分10
刚刚
所所应助如意的向彤采纳,获得10
刚刚
wood发布了新的文献求助10
1秒前
十年完成签到 ,获得积分10
1秒前
勤奋水之发布了新的文献求助10
1秒前
uuunnn完成签到,获得积分10
1秒前
在水一方应助小涛采纳,获得10
1秒前
CHEN123456发布了新的文献求助30
1秒前
酸奶烤着吃完成签到,获得积分10
2秒前
ruochenzu发布了新的文献求助10
2秒前
蒋若风完成签到,获得积分10
2秒前
贝贝贝完成签到,获得积分10
3秒前
zjd发布了新的文献求助10
3秒前
3秒前
阿鑫发布了新的文献求助10
3秒前
崔雨旋完成签到,获得积分10
3秒前
4秒前
英俊的高跟鞋完成签到,获得积分10
4秒前
tt发布了新的文献求助10
4秒前
毕春宇完成签到,获得积分10
4秒前
4秒前
幽默的太阳完成签到 ,获得积分10
5秒前
寒冷的寒梦完成签到,获得积分10
5秒前
bxb发布了新的文献求助10
5秒前
长愉完成签到,获得积分10
6秒前
6秒前
脑洞疼应助蓉城采纳,获得10
6秒前
mqq发布了新的文献求助10
7秒前
7秒前
小蔡发布了新的文献求助10
7秒前
Jasper应助wwe采纳,获得10
7秒前
阿南发布了新的文献求助10
7秒前
ZZzz完成签到,获得积分10
7秒前
肉肉完成签到,获得积分10
8秒前
wood完成签到,获得积分20
8秒前
一方通行完成签到,获得积分10
9秒前
小旭发布了新的文献求助10
9秒前
阿鑫完成签到,获得积分10
9秒前
langbuyu完成签到,获得积分10
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960377
求助须知:如何正确求助?哪些是违规求助? 3506460
关于积分的说明 11130713
捐赠科研通 3238673
什么是DOI,文献DOI怎么找? 1789847
邀请新用户注册赠送积分活动 871964
科研通“疑难数据库(出版商)”最低求助积分说明 803099