Development of machine learning models for the prediction of the compressive strength of calcium-based geopolymers

抗压强度 固化(化学) 氧化钙 人工神经网络 反向 均方误差 近似误差 材料科学 聚合物 预测建模 决定系数 计算机科学 机器学习 数学 算法 复合材料 统计 冶金 几何学
作者
Wangwen Huo,Zhiduo Zhu,He Sun,Borui Ma,Liu Yang
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:380: 135159-135159 被引量:50
标识
DOI:10.1016/j.jclepro.2022.135159
摘要

Compressive strength is an important mechanical index that determines the mixture design of geopolymer, and its accurate prediction is essential. The existing experiment-based and statistical methods are time-consuming, labor-intensive and inaccurate. This study aims to develop an effective, reliable and interpretable machine learning (ML) model for predicting the compressive strength of calcium-based geopolymers. Feature engineering was constructed with molar ratios of raw material oxide composition, curing system, and mixing design. A total of eight algorithms in three types, traditional ML algorithms, integrated tree-based ML algorithms, and deep neural network algorithm, were employed to predict the compressive strength, and their differences, advantages, and disadvantages were compared. The importance of input variables in model training was evaluated. The contribution and influence pattern of input features on the development of compressive strength were revealed using the SHapley Additive exPlanations (SHAP) and inverse prediction. The results demonstrate that among the eight models proposed, the XGB model had the highest prediction accuracy (91%) and the lowest root mean squared error (3.85 MPa). Based on the importance analysis and the SHAP value, the parameters that had the greatest impact on the compressive strength were curing age, n(H2O)/n(Na2O), curing temperature, n(SiO2)/n(CaO) and the mass ratio of alkali activation solution to solid powder (L/S). The effects of input features on the compressive strength development of calcium-based geopolymers captured by SHAP and inverse predictions based on the best predictive model were consistent with the experimental results and theoretical understanding. The research in this paper facilitates the rapid prediction, improvement and optimization of the proportioning design and application of calcium-based geopolymers, and also provides a theoretical basis for the utilization of industrial and construction waste, in line with sustainable and low-carbon development strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助chichenglin采纳,获得10
1秒前
2秒前
SciGPT应助二七采纳,获得10
2秒前
2秒前
3秒前
FashionBoy应助以太橘采纳,获得10
3秒前
Mulee完成签到,获得积分20
3秒前
852应助机智的思远采纳,获得10
4秒前
ljm发布了新的文献求助10
4秒前
小狗不是抠脚兵完成签到 ,获得积分10
5秒前
CodeCraft应助来自山灵的风采纳,获得10
5秒前
C2发布了新的文献求助10
6秒前
weifeng发布了新的文献求助10
6秒前
共享精神应助小于采纳,获得10
7秒前
修仙梅完成签到,获得积分10
7秒前
QL发布了新的文献求助10
7秒前
鱼前发布了新的文献求助10
7秒前
marjorie完成签到 ,获得积分10
8秒前
愉快的馒头完成签到,获得积分10
8秒前
宜醉宜游宜睡应助----采纳,获得10
9秒前
9秒前
sinber发布了新的文献求助10
10秒前
FDDZG完成签到,获得积分10
10秒前
10秒前
super蛋炒饭完成签到 ,获得积分10
11秒前
12秒前
123完成签到,获得积分10
13秒前
充电宝应助豆豆采纳,获得10
13秒前
皮皮皮咩完成签到,获得积分10
14秒前
jianjiao发布了新的文献求助10
14秒前
芒芒发布了新的文献求助10
14秒前
学呀学发布了新的文献求助10
15秒前
薄荷味完成签到 ,获得积分10
16秒前
科研通AI2S应助C2采纳,获得10
16秒前
ZXT完成签到 ,获得积分10
16秒前
沉默寄风发布了新的文献求助10
17秒前
Yy发布了新的文献求助10
17秒前
米花完成签到 ,获得积分10
18秒前
墨离发布了新的文献求助10
20秒前
希望天下0贩的0应助rusellw采纳,获得10
21秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160487
求助须知:如何正确求助?哪些是违规求助? 2811659
关于积分的说明 7892950
捐赠科研通 2470589
什么是DOI,文献DOI怎么找? 1315639
科研通“疑难数据库(出版商)”最低求助积分说明 630910
版权声明 602042