已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development of machine learning models for the prediction of the compressive strength of calcium-based geopolymers

抗压强度 固化(化学) 氧化钙 人工神经网络 反向 均方误差 近似误差 材料科学 聚合物 预测建模 决定系数 计算机科学 机器学习 数学 算法 复合材料 统计 冶金 几何学
作者
Wangwen Huo,Zhiduo Zhu,He Sun,Borui Ma,Liu Yang
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:380: 135159-135159 被引量:50
标识
DOI:10.1016/j.jclepro.2022.135159
摘要

Compressive strength is an important mechanical index that determines the mixture design of geopolymer, and its accurate prediction is essential. The existing experiment-based and statistical methods are time-consuming, labor-intensive and inaccurate. This study aims to develop an effective, reliable and interpretable machine learning (ML) model for predicting the compressive strength of calcium-based geopolymers. Feature engineering was constructed with molar ratios of raw material oxide composition, curing system, and mixing design. A total of eight algorithms in three types, traditional ML algorithms, integrated tree-based ML algorithms, and deep neural network algorithm, were employed to predict the compressive strength, and their differences, advantages, and disadvantages were compared. The importance of input variables in model training was evaluated. The contribution and influence pattern of input features on the development of compressive strength were revealed using the SHapley Additive exPlanations (SHAP) and inverse prediction. The results demonstrate that among the eight models proposed, the XGB model had the highest prediction accuracy (91%) and the lowest root mean squared error (3.85 MPa). Based on the importance analysis and the SHAP value, the parameters that had the greatest impact on the compressive strength were curing age, n(H2O)/n(Na2O), curing temperature, n(SiO2)/n(CaO) and the mass ratio of alkali activation solution to solid powder (L/S). The effects of input features on the compressive strength development of calcium-based geopolymers captured by SHAP and inverse predictions based on the best predictive model were consistent with the experimental results and theoretical understanding. The research in this paper facilitates the rapid prediction, improvement and optimization of the proportioning design and application of calcium-based geopolymers, and also provides a theoretical basis for the utilization of industrial and construction waste, in line with sustainable and low-carbon development strategies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
PA发布了新的文献求助10
刚刚
临床菜鸟完成签到 ,获得积分10
2秒前
TZTD发布了新的文献求助10
3秒前
称心映寒发布了新的文献求助10
3秒前
科研通AI6应助半_采纳,获得10
3秒前
byto发布了新的文献求助30
3秒前
4秒前
科研通AI2S应助xiaofeiyan采纳,获得10
5秒前
低空飞行发布了新的文献求助10
5秒前
今后应助默默的采纳,获得10
7秒前
Ryan完成签到,获得积分10
8秒前
9秒前
10秒前
10秒前
沉默发布了新的文献求助10
11秒前
天天快乐应助开放的千青采纳,获得10
11秒前
ivar完成签到,获得积分10
13秒前
14秒前
佳期发布了新的文献求助10
14秒前
所所应助byto采纳,获得10
14秒前
彭于晏应助tjnusq采纳,获得10
16秒前
阿正嗖啪完成签到,获得积分10
17秒前
17秒前
王贵发发布了新的文献求助10
19秒前
半青一江完成签到 ,获得积分10
23秒前
李健应助卡卡西采纳,获得50
23秒前
请问你认识wkk吗完成签到,获得积分10
24秒前
赘婿应助酷酷的大米采纳,获得30
24秒前
开心点完成签到 ,获得积分10
24秒前
24秒前
情怀应助充盈缺损采纳,获得10
28秒前
南川石发布了新的文献求助50
28秒前
29秒前
matinal发布了新的文献求助10
29秒前
Owen应助Bai采纳,获得10
34秒前
hao发布了新的文献求助10
34秒前
万能图书馆应助钙钛矿狗采纳,获得10
35秒前
刘刘完成签到 ,获得积分10
40秒前
41秒前
陈chen发布了新的文献求助10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627439
求助须知:如何正确求助?哪些是违规求助? 4713759
关于积分的说明 14962257
捐赠科研通 4784702
什么是DOI,文献DOI怎么找? 2554869
邀请新用户注册赠送积分活动 1516352
关于科研通互助平台的介绍 1476696