亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CXR-Net: A Multitask Deep Learning Network for Explainable and Accurate Diagnosis of COVID-19 Pneumonia From Chest X-Ray Images

深度学习 计算机科学 肺炎 人工智能 编码器 2019年冠状病毒病(COVID-19) 人工神经网络 计算机视觉 机器学习 医学 病理 传染病(医学专业) 疾病 内科学 操作系统
作者
Xin Zhang,Liangxiu Han,Tam Sobeih,Lianghao Han,Nina Dempsey‐Hibbert,Symeon Lechareas,Ascanio Tridente,Haoming Chen,Stephen J. White,Daoqiang Zhang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (2): 980-991 被引量:15
标识
DOI:10.1109/jbhi.2022.3220813
摘要

Accurate and rapid detection of COVID-19 pneumonia is crucial for optimal patient treatment. Chest X-Ray (CXR) is the first line imaging test for COVID-19 pneumonia diagnosis as it is fast, cheap and easily accessible. Inspired by the success of deep learning (DL) in computer vision, many DL-models have been proposed to detect COVID-19 pneumonia using CXR images. Unfortunately, these deep classifiers lack the transparency in interpreting findings, which may limit their applications in clinical practice. The existing commonly used visual explanation methods are either too noisy or imprecise, with low resolution, and hence are unsuitable for diagnostic purposes. In this work, we propose a novel explainable deep learning framework (CXRNet) for accurate COVID-19 pneumonia detection with an enhanced pixel-level visual explanation from CXR images. The proposed framework is based on a new Encoder-Decoder-Encoder multitask architecture, allowing for both disease classification and visual explanation. The method has been evaluated on real world CXR datasets from both public and private data sources, including: healthy, bacterial pneumonia, viral pneumonia and COVID-19 pneumonia cases The experimental results demonstrate that the proposed method can achieve a satisfactory level of accuracy and provide fine-resolution classification activation maps for visual explanation in lung disease detection. The Average Accuracy, the Precision, Recall and F1-score of COVID-19 pneumonia reached 0.879, 0.985, 0.992 and 0.989, respectively. We have also found that using lung segmented (CXR) images can help improve the performance of the model. The proposed method can provide more detailed high resolution visual explanation for the classification decision, compared to current state-of-the-art visual explanation methods and has a great potential to be used in clinical practice for COVID-19 pneumonia diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
33秒前
57秒前
Sym发布了新的文献求助10
58秒前
立行完成签到 ,获得积分10
1分钟前
安静书雁完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
3分钟前
古铜完成签到 ,获得积分10
3分钟前
契咯完成签到,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
苏楠完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
老迟到的友桃完成签到 ,获得积分10
6分钟前
ceeray23发布了新的文献求助20
6分钟前
tingalan应助科研通管家采纳,获得10
6分钟前
bookgg完成签到 ,获得积分10
6分钟前
6分钟前
ZgnomeshghT发布了新的文献求助10
6分钟前
善学以致用应助ZgnomeshghT采纳,获得10
6分钟前
6分钟前
6分钟前
7分钟前
7分钟前
7分钟前
7分钟前
孤独剑完成签到 ,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Rapid synthesis of subnanoscale high-entropy alloys with ultrahigh durability 666
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4889480
求助须知:如何正确求助?哪些是违规求助? 4173477
关于积分的说明 12952093
捐赠科研通 3934926
什么是DOI,文献DOI怎么找? 2159102
邀请新用户注册赠送积分活动 1177454
关于科研通互助平台的介绍 1082281