CXR-Net: A Multitask Deep Learning Network for Explainable and Accurate Diagnosis of COVID-19 Pneumonia From Chest X-Ray Images

深度学习 计算机科学 肺炎 人工智能 编码器 2019年冠状病毒病(COVID-19) 人工神经网络 计算机视觉 机器学习 医学 病理 传染病(医学专业) 疾病 内科学 操作系统
作者
Xin Zhang,Liangxiu Han,Tam Sobeih,Lianghao Han,Nina Dempsey‐Hibbert,Symeon Lechareas,Ascanio Tridente,Haoming Chen,Stephen J. White,Daoqiang Zhang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (2): 980-991 被引量:15
标识
DOI:10.1109/jbhi.2022.3220813
摘要

Accurate and rapid detection of COVID-19 pneumonia is crucial for optimal patient treatment. Chest X-Ray (CXR) is the first line imaging test for COVID-19 pneumonia diagnosis as it is fast, cheap and easily accessible. Inspired by the success of deep learning (DL) in computer vision, many DL-models have been proposed to detect COVID-19 pneumonia using CXR images. Unfortunately, these deep classifiers lack the transparency in interpreting findings, which may limit their applications in clinical practice. The existing commonly used visual explanation methods are either too noisy or imprecise, with low resolution, and hence are unsuitable for diagnostic purposes. In this work, we propose a novel explainable deep learning framework (CXRNet) for accurate COVID-19 pneumonia detection with an enhanced pixel-level visual explanation from CXR images. The proposed framework is based on a new Encoder-Decoder-Encoder multitask architecture, allowing for both disease classification and visual explanation. The method has been evaluated on real world CXR datasets from both public and private data sources, including: healthy, bacterial pneumonia, viral pneumonia and COVID-19 pneumonia cases The experimental results demonstrate that the proposed method can achieve a satisfactory level of accuracy and provide fine-resolution classification activation maps for visual explanation in lung disease detection. The Average Accuracy, the Precision, Recall and F1-score of COVID-19 pneumonia reached 0.879, 0.985, 0.992 and 0.989, respectively. We have also found that using lung segmented (CXR) images can help improve the performance of the model. The proposed method can provide more detailed high resolution visual explanation for the classification decision, compared to current state-of-the-art visual explanation methods and has a great potential to be used in clinical practice for COVID-19 pneumonia diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZQ完成签到 ,获得积分10
2秒前
研友_Z729Mn发布了新的文献求助10
3秒前
4秒前
pigff完成签到,获得积分10
5秒前
5秒前
7秒前
oceanao应助辛勤夜柳采纳,获得10
9秒前
xiaozhou发布了新的文献求助10
10秒前
10秒前
sishwn发布了新的文献求助20
10秒前
缥缈南风发布了新的文献求助10
10秒前
10秒前
mm发布了新的文献求助20
11秒前
11秒前
12秒前
12秒前
15秒前
cindy发布了新的文献求助10
18秒前
micomico发布了新的文献求助10
18秒前
开朗的傲儿完成签到 ,获得积分10
22秒前
上官若男应助GC采纳,获得10
23秒前
24秒前
领导范儿应助研友_Z7WGlZ采纳,获得10
24秒前
Orange应助狂野思卉采纳,获得10
25秒前
25秒前
周应完成签到,获得积分10
26秒前
可问春风完成签到,获得积分10
27秒前
right完成签到 ,获得积分10
28秒前
30秒前
Gigi发布了新的文献求助10
30秒前
周应发布了新的文献求助10
31秒前
33秒前
wanci应助小许小许采纳,获得10
34秒前
研友_Z7WGlZ发布了新的文献求助10
36秒前
我是老大应助micomico采纳,获得10
36秒前
wanci应助Gigi采纳,获得10
38秒前
38秒前
mm完成签到,获得积分20
41秒前
43秒前
大有阳光应助Roypeng采纳,获得10
44秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164130
求助须知:如何正确求助?哪些是违规求助? 2814873
关于积分的说明 7906891
捐赠科研通 2474467
什么是DOI,文献DOI怎么找? 1317493
科研通“疑难数据库(出版商)”最低求助积分说明 631841
版权声明 602228