Synergy of Z-scheme heterostructure with interfacial S−O bonding in In2S3/BiOBr for efficient tetracycline hydrochloride degradation and Cr(VI) reduction

异质结 光催化 X射线光电子能谱 材料科学 降级(电信) 化学工程 盐酸四环素 水溶液 电子转移 化学 四环素 光化学 光电子学 计算机科学 物理化学 有机化学 催化作用 电信 工程类 生物化学 抗生素
作者
Xiaofei Fu,Junwu Tao,Zuming He,Yong Gao,Yongmei Xia,Zizhou Zhao
出处
期刊:Journal of Alloys and Compounds [Elsevier]
卷期号:936: 168202-168202 被引量:50
标识
DOI:10.1016/j.jallcom.2022.168202
摘要

High-efficiency interfacial charge transfer is the key to achieve better spatial carrier separation, and thus to develop advanced heterogeneous photocatalysts for environmental remediation. However, It still remains a great challenge to design and exploit the effective charge transfer scheme. Herein, a novel Z-scheme In2S3/BiOBr with S−O covalent bonding was prepared by hydrothermal and subsequent thermal annealing methods. The obtained photocatalysts were systematically characterized and used for tetracycline hydrochloride degradation and Cr(VI) reduction in aqueous solution. As a result, the optimized In2S3/BiOBr heterostructure (IS/BOB-39) exhibited superior photocatalytic activities for tetracycline hydrochloride degradation and Cr(VI) reduction under simulated solar light irradiation compared with individual materials. The Z-scheme transfer mechanism was corroborated by trapping experiments, ESR and XPS analysis, which provided an effective transfer pathway for spatial separation of carriers. Moreover, the formation of chemical S−O bond between In2S3 and BiOBr, which acted as a specific bridge to expediently transmit interfacial electrons, showed a synergistic effect with Z-scheme transfer model on the significantly enhanced photocatalytic performance. In addition, the In2S3/BiOBr heterojunction presented excellent cycle stability, resulting from the tight heterointerface. This work provides a promising approach to design and fabricate high effect Z-scheme heterojunction in wastewater treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Criminology34应助无zzz的人采纳,获得10
刚刚
烟花应助yz采纳,获得10
1秒前
1秒前
通通通发布了新的文献求助30
1秒前
1秒前
2秒前
贾哲宇完成签到,获得积分10
2秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
小猪找库里完成签到,获得积分10
3秒前
月月月鸟伟完成签到,获得积分10
3秒前
慕青应助kkeeaa采纳,获得10
3秒前
4秒前
zsqqqqq发布了新的文献求助10
4秒前
个性的紫菜应助上善若水采纳,获得10
4秒前
Ashore发布了新的文献求助10
4秒前
4秒前
俊逸的念桃完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
5秒前
xinglihai发布了新的文献求助10
5秒前
完美世界应助坚强的严青采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
苦逼科研狗完成签到,获得积分20
6秒前
henglu发布了新的文献求助10
6秒前
郝好发布了新的文献求助10
6秒前
勤奋以山完成签到,获得积分10
7秒前
123by发布了新的文献求助10
7秒前
bkagyin应助77采纳,获得10
7秒前
7秒前
飘逸的麦片完成签到,获得积分10
8秒前
9秒前
10秒前
10秒前
10秒前
102755发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784558
求助须知:如何正确求助?哪些是违规求助? 5682922
关于积分的说明 15464566
捐赠科研通 4913664
什么是DOI,文献DOI怎么找? 2644848
邀请新用户注册赠送积分活动 1592770
关于科研通互助平台的介绍 1547187