Modeling of a multi-parameter chaotic optoelectronic oscillator based on the Fourier neural operator

人工神经网络 非线性系统 操作员(生物学) 混乱的 控制理论(社会学) 一般化 李雅普诺夫指数 物理 计算机科学 应用数学 数学 数学分析 量子力学 人工智能 转录因子 基因 抑制因子 生物化学 化学 控制(管理)
作者
Jiacheng Feng,Lin Jiang,Lianshan Yan,Anlin Yi,Song-Sui Li,Wei Pan,Bin Luo,Yan Pan,Bingjie Xu,Lilin Yi,Longsheng Wang,Anbang Wang,Yuncai Wang
出处
期刊:Optics Express [The Optical Society]
卷期号:30 (25): 44798-44798 被引量:11
标识
DOI:10.1364/oe.474053
摘要

A model construction scheme of chaotic optoelectronic oscillator (OEO) based on the Fourier neural operator (FNO) is proposed. Different from the conventional methods, we learn the nonlinear dynamics of OEO (actual components) in a data-driven way, expecting to obtain a multi-parameter OEO model for generating chaotic carrier with high-efficiency and low-cost. FNO is a deep learning architecture which utilizes neural network as a parameter structure to learn the trajectory of the family of equations from training data. With the assistance of FNO, the nonlinear dynamics of OEO characterized by differential delay equation can be modeled easily. In this work, the maximal Lyapunov exponent is applied to judge whether these time series have chaotic behavior, and the Pearson correlation coefficient (PCC) is introduced to evaluate the modeling performance. Compare with long and short-term memory (LSTM), FNO is not only superior to LSTM in modeling accuracy, but also requires less training data. Subsequently, we analyze the modeling performance of FNO under different feedback gains and time delays. Both numerical and experimental results show that the PCC can be greater than 0.99 in the case of low feedback gain. Next, we further analyze the influence of different system oscillation frequencies, and the generalization ability of FNO is also analyzed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhu发布了新的文献求助10
刚刚
小李完成签到,获得积分10
1秒前
妮劳斯完成签到 ,获得积分10
3秒前
3秒前
顾矜应助研友_8RyzBZ采纳,获得10
3秒前
NexusExplorer应助yu采纳,获得10
3秒前
孤巷的猫完成签到,获得积分10
3秒前
Ambition9完成签到,获得积分10
4秒前
4秒前
踏实的傲白完成签到 ,获得积分0
6秒前
7秒前
8秒前
Ambition9发布了新的文献求助10
9秒前
Hello应助金桔儿采纳,获得10
9秒前
10秒前
11秒前
充电宝应助Catherine_Song采纳,获得10
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
予秋发布了新的文献求助10
13秒前
杉杉发布了新的文献求助10
14秒前
15秒前
16秒前
李曼婷发布了新的文献求助10
17秒前
科研通AI6应助阿卡米星采纳,获得10
17秒前
快乐绝悟完成签到,获得积分10
18秒前
小牧鱼完成签到,获得积分10
18秒前
萌萌雨发布了新的文献求助10
18秒前
CipherSage应助杉杉采纳,获得30
19秒前
19秒前
大个应助Luke采纳,获得10
20秒前
21秒前
萌萌发布了新的文献求助10
21秒前
21秒前
科研小小白完成签到 ,获得积分10
21秒前
22秒前
22秒前
22秒前
kytm完成签到,获得积分10
22秒前
23秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584366
求助须知:如何正确求助?哪些是违规求助? 4667892
关于积分的说明 14769849
捐赠科研通 4610340
什么是DOI,文献DOI怎么找? 2529769
邀请新用户注册赠送积分活动 1498755
关于科研通互助平台的介绍 1467307