Predictive models to assess risk of extended length of stay in adults with spinal deformity and lumbar degenerative pathology: development and internal validation

医学 逻辑回归 腰椎 脊柱融合术 脊柱畸形 逐步回归 曲线下面积 多元分析 外科 畸形 物理疗法 内科学
作者
Ayush Arora,Joshua Demb,Daniel D. Cummins,Matthew Callahan,Aaron J. Clark,Alekos A. Theologis
出处
期刊:The Spine Journal [Elsevier]
卷期号:23 (3): 457-466 被引量:8
标识
DOI:10.1016/j.spinee.2022.10.009
摘要

Postoperative recovery after adult spinal deformity (ASD) operations is arduous, fraught with complications, and often requires extended hospital stays. A need exists for a method to rapidly predict patients at risk for extended length of stay (eLOS) in the preoperative setting.To develop a machine learning model to preoperatively estimate the likelihood of eLOS following elective multi-level lumbar/thoracolumbar spinal instrumented fusions (≥3 segments) for ASD.Retrospectively from a state-level inpatient database hosted by the Health care cost and Utilization Project.Of 8,866 patients of age ≥50 with ASD undergoing elective lumbar or thoracolumbar multilevel instrumented fusions.The primary outcome was eLOS (>7 days).Predictive variables consisted of demographics, comorbidities, and operative information. Significant variables from univariate and multivariate analyses were used to develop a logistic regression-based predictive model that use six predictors. Model accuracy was assessed through area under the curve (AUC), sensitivity, and specificity.Of 8,866 patients met inclusion criteria. A saturated logistic model with all significant variables from multivariate analysis was developed (AUC=0.77), followed by generation of a simplified logistic model through stepwise logistic regression (AUC=0.76). Peak AUC was reached with inclusion of six selected predictors (combined anterior and posterior approach, surgery to both lumbar and thoracic regions, ≥8 level fusion, malnutrition, congestive heart failure, and academic institution). A cutoff of 0.18 for eLOS yielded a sensitivity of 77% and specificity of 68%.This predictive model can facilitate identification of adults at risk for eLOS following elective multilevel lumbar/thoracolumbar spinal instrumented fusions for ASD. With a fair diagnostic accuracy, the predictive calculator will ideally enable clinicians to improve preoperative planning, guide patient expectations, enable optimization of modifiable risk factors, facilitate appropriate discharge planning, stratify financial risk, and accurately identify patients who may represent high-cost outliers. Future prospective studies that validate this risk assessment tool on external datasets would be valuable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈子皮boy发布了新的文献求助10
1秒前
唯美发布了新的文献求助10
1秒前
追风少年i发布了新的文献求助10
2秒前
2秒前
wy.he应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
幕帆应助科研通管家采纳,获得20
2秒前
zho应助科研通管家采纳,获得10
2秒前
2秒前
wy.he应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
海韵之心完成签到 ,获得积分0
3秒前
3秒前
4秒前
爱静静应助喜悦的绮露采纳,获得30
4秒前
wyn完成签到,获得积分10
5秒前
brave完成签到 ,获得积分10
5秒前
刻苦鸡完成签到,获得积分10
5秒前
Ch完成签到 ,获得积分10
6秒前
wwwwl完成签到 ,获得积分10
7秒前
sgffdhcv完成签到 ,获得积分10
7秒前
xinxinqi完成签到 ,获得积分10
7秒前
河河完成签到 ,获得积分10
7秒前
cassie完成签到,获得积分10
8秒前
xixi发布了新的文献求助10
8秒前
今后应助认真猕猴桃采纳,获得10
9秒前
走着完成签到,获得积分10
9秒前
wanli完成签到,获得积分10
10秒前
是容与呀完成签到,获得积分10
10秒前
Nicolas完成签到,获得积分20
10秒前
缓慢钢笔发布了新的文献求助10
11秒前
11秒前
忧子忘完成签到,获得积分10
12秒前
13秒前
Takagi完成签到,获得积分10
14秒前
百十余完成签到,获得积分10
14秒前
在水一方应助小白采纳,获得10
15秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244993
求助须知:如何正确求助?哪些是违规求助? 2888606
关于积分的说明 8254294
捐赠科研通 2557053
什么是DOI,文献DOI怎么找? 1385683
科研通“疑难数据库(出版商)”最低求助积分说明 650212
邀请新用户注册赠送积分活动 626403