Advances in plasma proteomics: Moving from technology to precision medicine

蛋白质组学 蛋白质组 血液蛋白质类 计算生物学 生物信息学 定量蛋白质组学 医学 生物 内科学 遗传学 基因
作者
Xiaobo Yu,Jochen M. Schwenk,Ping Xu,Joshua LaBaer
出处
期刊:Proteomics Clinical Applications [Wiley]
卷期号:16 (6) 被引量:2
标识
DOI:10.1002/prca.202200083
摘要

Blood is the central system that connects all the tissues and organs in the body. It executes functions through a diverse set of signaling proteins that play important roles in modulating immunity, inflammation, coagulation, and metabolism.[1] Because of this unique role, blood carries biomolecules from everywhere in the body, which can be viewed as markers of ongoing activities that provide a window through which we can assess countless aspects of the body's health status. Significant efforts had been devoted toward developing and applying proteomics technologies to analyze the plasma/serum proteome, elucidate disease mechanisms and identify biomarkers for diagnosing disease and monitoring the response to treatment.[2] To promote the development of plasma proteomics, we organized the special issue “Advances in plasma proteomics: moving from technology to precision medicine”, in which four research articles, one technical brief and two reviews were selected. He et al. reviewed the advances of proteomics technologies in analyzing the plasma proteomics and peptidomics, and their applications in studying Coronavirus disease (COVID-19) and cancer. In addition, the issues and potential solutions in the proteomics-based translational studies were discussed.[3] Juanes-Velasco et al. developed a microarray that surveys acute phase proteins in plasma. The procedure was deployed to study SARS-CoV-2 infected patients, in which changes in acute phase protein levels were detected between healthy and COVID-19 patients.[4] Li et al. determined proteome changes in the plasma of 20 HIV patients before and after antiretroviral therapy (ART) using mass spectrometry with tandem mass tag labeling. A total of 1398 protein groups (PGs) were identified, in which the upregulated proteins (n = 50) were enriched in gap junction signaling and actin cytoskeleton signaling, while downregulated proteins (n = 18) were enriched in IL-15 signaling pathway. The results from this study illustrated the underlying mechanistic pathways in response to ART and identified potential targets to prompt the immune reconstitution.[5] Zhang et al. explored the O-glycoproteome changes in the serum of 10 breast cancer patients using isobaric-TMT-labeling quantitative O-glycoproteomics. 299 O-glycopeptides corresponding to 83 O-glycosites and 66 O-glycoproteins were identified. 13 O-glycopeptides were found differentially abundant between breast cancer patients and controls. The latter group was prepared by mixing equal volume of plasma from ten healthy volunteers, including IgG1, IgG3, CO4, HP, ANT3, IC1 and FINC.[6] In addition to profiling changes in disease-related protein levels, there is growing interest in studying adaptive immunity to evaluate the effect of auto-reactive antibodies.[7] These circulating autoantibodies can provide opportunities for disease early risk assessment, diagnosis, and prediction of therapeutic responses.[8-11] Therefore, detecting autoantibodies is a critical complement to other omics data for elucidating the mechanism of autoimmunity. Due to their rigid structure, antibodies are ideal biomarker candidates for rapidly implementing reliable test systems in clinical practice. To address this need, Ren et al. developed a microarray platform to measure thousands of serological autoantibodies simultaneously with high sensitivity (pg/ml) and reproducibility (r correlation within the array is 1 and r correlation between arrays from different batches is 0.97–0.99). With this array, autoantibodies were found to associate with different physiological and pathological states. Unique autoantibody profiles were identified for the healthy control, systemic lupus erythematosus, rheumatoid arthritis and lung cancer.[12] Using protein microarray, Banerjee, et al. profiled the expression of autoantibodies in the serum of four healthy controls, four Acromegaly, three Cushing's and three Nonfunctional Pituitary Adenomas (NFPAs) patients. The results identified autoantibodies to five proteins in Acromegaly, five proteins in Cushing's patients, two proteins in NFPA patients.[13] All these results demonstrate the suitability of protein microarray in discovering circulating antibodies associated with humoral autoimmunity. This could be used to execute systematic studies of human diseases together with genomics, proteomics, and metabolomics.[14] Compared to protein microarrays, the number of yet-discovered autoantibodies that are detected could be significantly expanded by the phage display and next-generation sequencing. Qi et al. reviewed the technological advances in the field of autoantibody studies by proteome microarray and phage display, discussed their merits and limitations and the future directions of this field.[15] Following the advances of genomics, proteomics has had a growing influence on precision medicine by elucidating patient heterogeneity and finding biomarkers for more precise disease detection as well as the targets for developing more effective therapies.[16] Studying the circulating proteomics will represent the frontier of clinical proteomics. It will not only offer a window into health and disease, but also bring forward the technologies (i.e., multiplexed immunoassays) that are easier to translate into the clinical laboratory due to the ease of sample preparation, detection, and data processing. It is worth noting that the proteomics-driven precision medicine has to be pushed forward by extensive collaboration between research institutes, hospitals, policy makers, companies, public and private investment, etc.[17] At last, we extend our gratitude to the authors for their manuscripts and to the staff of Proteomics-Clinical Applications for their expeditious and efficient handling of the manuscripts. This work was supported by the National Key R&D Program of China (2020YFE0202200). In addition, we would like to acknowledge the support from Human Plasma Proteome Project, Chinese Human Proteome Organization (CNHUPO), and National Center for Protein Sciences-Beijing (PHOENIX Center). The authors have declared no conflict of interest.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
11235发布了新的文献求助10
4秒前
萧晓完成签到 ,获得积分10
4秒前
药药55完成签到,获得积分10
4秒前
donk发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
6秒前
Arthur完成签到,获得积分10
6秒前
18275412695发布了新的文献求助10
7秒前
8秒前
风清扬发布了新的文献求助10
8秒前
9秒前
juqiu发布了新的文献求助10
9秒前
11秒前
11秒前
思源应助Hazelwf采纳,获得10
12秒前
喜喜喜嘻嘻嘻完成签到 ,获得积分10
12秒前
迷路竹完成签到,获得积分10
12秒前
shanyuyulai完成签到 ,获得积分10
13秒前
领导范儿应助juqiu采纳,获得10
13秒前
璐璐完成签到,获得积分10
13秒前
13秒前
LJL完成签到,获得积分20
14秒前
兔子完成签到,获得积分10
14秒前
super chan发布了新的文献求助10
15秒前
drwlr发布了新的文献求助10
16秒前
Owen应助5114采纳,获得10
18秒前
gong完成签到,获得积分10
18秒前
1212发布了新的文献求助10
18秒前
小田完成签到 ,获得积分10
19秒前
依依发布了新的文献求助10
20秒前
小蘑菇应助陈泽宇采纳,获得10
24秒前
24秒前
PhDLi完成签到,获得积分10
25秒前
buno应助小马采纳,获得10
25秒前
fuiee完成签到,获得积分10
26秒前
蓝天应助麻辣小龙虾采纳,获得10
26秒前
11235完成签到,获得积分10
26秒前
袁同学完成签到,获得积分10
26秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604106
求助须知:如何正确求助?哪些是违规求助? 4688956
关于积分的说明 14857141
捐赠科研通 4696700
什么是DOI,文献DOI怎么找? 2541175
邀请新用户注册赠送积分活动 1507328
关于科研通互助平台的介绍 1471851