Mechanism Analysis of Shale Gas Adsorption under Carbon Dioxide–Moisture Conditions: A Molecular Dynamic Study

吸附 干酪根 甲烷 油页岩 化学 二氧化碳 解吸 化学物理 碳纤维 水分 范德瓦尔斯力 化学工程 分子 热力学 材料科学 有机化学 烃源岩 地质学 复合材料 古生物学 工程类 物理 构造盆地 复合数
作者
Jie Liu,Tao Zhang,Shuyu Sun
出处
期刊:Energy & Fuels [American Chemical Society]
卷期号:36 (24): 14865-14873 被引量:15
标识
DOI:10.1021/acs.energyfuels.2c03244
摘要

In recent decades, shale gas, which has been regarded as a source of clean energy, is gradually replacing conventional energy. Shale gas adsorption in carbon dioxide (CO2)–moisture systems has been discussed in many previous studies; however, the intrinsic mechanism has not been clarified yet. In this work, the molecular dynamic (MD) method is adopted to study the adsorption behaviors of shale gas adsorption in the realistic kerogen nanoslit. The spatial density distributions of shale gas and different components have strong inhomogeneity. To reveal the heterogeneous adsorption mechanism, the potential of mean force (PMF) distributions of shale gas components are calculated on different target positions for the first time. The water (H2O) component prefers to adsorb on the oxygen-enriched position, as a result of the strong molecular polarity and hydrogen bond interactions. The CO2 component tends to adsorb on the carbon-rich site, which is the result of combining the van der Waals interaction and molecular polarity with kerogen walls. The potential energy contours are computed to verify the affinities between different components and the kerogen surface, and the potential energy difference can be observed between the bulk phase and adsorbed phase, which corresponds to the density and PMF analyses. The sensitivity analysis is also carried out to verify the above mechanism explanation. Higher temperature facilitates the desorption of shale gas, and higher pressure leads to more adsorption quantity. In the larger pore space, because of more content of H2O and CO2 molecules, the adsorption amount of methane (CH4) decreases. More content of CO2 is conducive to the desorption of shale gas, verified by cases in various component proportions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jopaul完成签到,获得积分10
刚刚
LX1005完成签到,获得积分10
1秒前
yu完成签到,获得积分10
1秒前
Orange应助yao chen采纳,获得10
1秒前
科研通AI6应助嘉嘉琦采纳,获得10
1秒前
勤恳的若风完成签到,获得积分10
2秒前
李家酥铺完成签到,获得积分20
2秒前
远远发布了新的文献求助10
2秒前
kefan_123完成签到,获得积分10
2秒前
2秒前
王思鲁完成签到,获得积分10
3秒前
Lin完成签到,获得积分10
3秒前
胖胖桑完成签到,获得积分20
3秒前
汉堡包应助lvwubin采纳,获得10
4秒前
是亲爱的小王完成签到,获得积分10
4秒前
5秒前
5秒前
虚影完成签到,获得积分10
5秒前
赵若琪发布了新的文献求助30
5秒前
十叶月完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
轻松一曲应助kndr10采纳,获得10
7秒前
1234发布了新的文献求助10
7秒前
情怀应助lanzinuo采纳,获得10
7秒前
llllll完成签到,获得积分10
8秒前
8秒前
9秒前
烟花应助海盐气泡水采纳,获得10
9秒前
9秒前
隐形曼青应助ww采纳,获得10
9秒前
星辰大海应助xh采纳,获得10
9秒前
Orange应助小蘑菇采纳,获得10
10秒前
sycsyc完成签到,获得积分10
10秒前
血小板发布了新的文献求助10
10秒前
激动的半梦完成签到,获得积分10
10秒前
Fiona000001完成签到,获得积分10
11秒前
大写的笨发布了新的文献求助10
11秒前
大块完成签到 ,获得积分10
12秒前
zhangq发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629839
求助须知:如何正确求助?哪些是违规求助? 4720715
关于积分的说明 14970892
捐赠科研通 4787804
什么是DOI,文献DOI怎么找? 2556517
邀请新用户注册赠送积分活动 1517691
关于科研通互助平台的介绍 1478271