Mechanism Analysis of Shale Gas Adsorption under Carbon Dioxide–Moisture Conditions: A Molecular Dynamic Study

吸附 干酪根 甲烷 油页岩 化学 二氧化碳 解吸 化学物理 碳纤维 水分 范德瓦尔斯力 化学工程 分子 热力学 材料科学 有机化学 烃源岩 地质学 复合材料 古生物学 工程类 物理 构造盆地 复合数
作者
Jie Liu,Tao Zhang,Shuyu Sun
出处
期刊:Energy & Fuels [American Chemical Society]
卷期号:36 (24): 14865-14873 被引量:15
标识
DOI:10.1021/acs.energyfuels.2c03244
摘要

In recent decades, shale gas, which has been regarded as a source of clean energy, is gradually replacing conventional energy. Shale gas adsorption in carbon dioxide (CO2)–moisture systems has been discussed in many previous studies; however, the intrinsic mechanism has not been clarified yet. In this work, the molecular dynamic (MD) method is adopted to study the adsorption behaviors of shale gas adsorption in the realistic kerogen nanoslit. The spatial density distributions of shale gas and different components have strong inhomogeneity. To reveal the heterogeneous adsorption mechanism, the potential of mean force (PMF) distributions of shale gas components are calculated on different target positions for the first time. The water (H2O) component prefers to adsorb on the oxygen-enriched position, as a result of the strong molecular polarity and hydrogen bond interactions. The CO2 component tends to adsorb on the carbon-rich site, which is the result of combining the van der Waals interaction and molecular polarity with kerogen walls. The potential energy contours are computed to verify the affinities between different components and the kerogen surface, and the potential energy difference can be observed between the bulk phase and adsorbed phase, which corresponds to the density and PMF analyses. The sensitivity analysis is also carried out to verify the above mechanism explanation. Higher temperature facilitates the desorption of shale gas, and higher pressure leads to more adsorption quantity. In the larger pore space, because of more content of H2O and CO2 molecules, the adsorption amount of methane (CH4) decreases. More content of CO2 is conducive to the desorption of shale gas, verified by cases in various component proportions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chencheng发布了新的文献求助10
刚刚
刚刚
春水梨完成签到 ,获得积分10
刚刚
Owen应助Dabaozi采纳,获得10
刚刚
古月完成签到,获得积分10
刚刚
沧海泪发布了新的文献求助10
刚刚
star应助危机的雍采纳,获得10
2秒前
2秒前
xutingfeng发布了新的文献求助10
2秒前
小巧的中蓝完成签到 ,获得积分10
3秒前
zzzzzzzzzzzz完成签到,获得积分10
3秒前
领导范儿应助生动路人采纳,获得10
3秒前
春水梨关注了科研通微信公众号
4秒前
6秒前
斯文败类应助布小丁采纳,获得10
6秒前
Lucas应助ccc采纳,获得10
6秒前
7秒前
liiy完成签到,获得积分10
7秒前
9秒前
俭朴的雨梅完成签到,获得积分10
10秒前
11秒前
桐桐应助危机的雍采纳,获得30
11秒前
12秒前
13秒前
苦行僧完成签到,获得积分10
13秒前
13秒前
13秒前
情怀应助无情山水采纳,获得10
13秒前
13秒前
科研小白发布了新的文献求助10
14秒前
布丁完成签到,获得积分10
14秒前
麕麕完成签到 ,获得积分10
15秒前
Jessie发布了新的文献求助10
16秒前
如初发布了新的文献求助10
16秒前
17秒前
狄远山完成签到 ,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
绿端发布了新的文献求助10
17秒前
HJJ完成签到 ,获得积分10
18秒前
田様应助jjhh采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911582
求助须知:如何正确求助?哪些是违规求助? 4187043
关于积分的说明 13002331
捐赠科研通 3954873
什么是DOI,文献DOI怎么找? 2168482
邀请新用户注册赠送积分活动 1186950
关于科研通互助平台的介绍 1094256