Multi-Attn BLS: Multi-head attention mechanism with broad learning system for chaotic time series prediction

计算机科学 混乱的 一般化 人工智能 非线性系统 机器学习 深度学习 系列(地层学) 吸引子 特征(语言学) 算法 数学 古生物学 哲学 生物 数学分析 语言学 物理 量子力学
作者
Liyun Su,Lang Xiong,Jialing Yang
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:132: 109831-109831 被引量:19
标识
DOI:10.1016/j.asoc.2022.109831
摘要

The observational 1-D signals available for realizing the highly accurate intrinsic attractor fitting of deep learning network approaches are often insufficient because of the complexity and nonlinearity of chaotic time series. Unlike deep models, a broad learning system (BLS) with the attention mechanism exhibits a unique and preeminent pattern prediction ability. Thus, this system has been applied as a practical trend in many fields. However, the application of multi-head attention fused manifold broad learning architecture to chaotic time series prediction remains inadequate. Thus, a multi-head attentional BLS (Multi-Attn BLS) for chaotic time series prediction is proposed in this study to improve the prediction accuracy of chaotic time series further. Our model develops a novel framework that combines the high computational efficiency of broad learning with the multi-head attention mechanism. First, the received data are reconstructed into fixed-size tuples. The multidimensional arrays with embedding dimensions and time delay are used as the input to a broad learning network. Subsequently, a robust BLS with a spatiotemporal multi-head attention mechanism is developed to depict the internal dynamic evolution. The Multi-Attn BLS model can capture key spatiotemporal feature information and achieve high predictive performance. It also has a good generalization ability in practical nonlinear complex systems. Comparative experiments with the traditional long short-term memory (LSTM) network and the primitive BLS show that its computing speed and generalization ability are improved. Furthermore, the network is good at capturing the spatiotemporal features of the sequence because of the multi-head attention mechanism. The experimental results show that our model outperforms BLS, ridge regression, and LSTM on the four main evaluation indicators (root mean square error, root mean square percentage error, mean absolute error, and mean absolute percentage error) in predicting classical systems (Lorenz and Rossler systems). Moreover, the model has an excellent prediction effect in the real-world chaotic system of sea clutter.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雨水完成签到,获得积分10
刚刚
zoey发布了新的文献求助10
1秒前
lic发布了新的文献求助10
1秒前
misskenshion发布了新的文献求助10
1秒前
不过尔尔完成签到,获得积分10
1秒前
汉堡包应助登登采纳,获得10
2秒前
爆米花应助ardejiang采纳,获得10
2秒前
3秒前
4秒前
Andy完成签到,获得积分10
5秒前
薰硝壤应助pan采纳,获得10
5秒前
6秒前
星沉静默完成签到 ,获得积分10
7秒前
大模型应助lee采纳,获得10
8秒前
科研笑川发布了新的文献求助10
8秒前
狄谷南发布了新的文献求助10
8秒前
9秒前
三点水发布了新的文献求助10
9秒前
9秒前
聪慧的正豪应助ark861023采纳,获得10
10秒前
今后应助Fan采纳,获得10
10秒前
Taylor发布了新的文献求助10
11秒前
Jasper应助rFsu66Aiir采纳,获得10
11秒前
薰硝壤应助ddd123采纳,获得10
12秒前
12秒前
薰硝壤应助00采纳,获得10
13秒前
善良的方盒关注了科研通微信公众号
13秒前
领导范儿应助zoey采纳,获得10
14秒前
14秒前
小马甲应助快乐灵安采纳,获得10
14秒前
15秒前
明明完成签到,获得积分10
15秒前
万能图书馆应助阎梦凡采纳,获得10
15秒前
15秒前
ccc发布了新的文献求助10
17秒前
17秒前
17秒前
狄谷南完成签到,获得积分10
17秒前
Fx完成签到 ,获得积分10
17秒前
18秒前
高分求助中
Lire en communiste 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3168966
求助须知:如何正确求助?哪些是违规求助? 2820245
关于积分的说明 7929811
捐赠科研通 2480332
什么是DOI,文献DOI怎么找? 1321320
科研通“疑难数据库(出版商)”最低求助积分说明 633191
版权声明 602497