吸附
水溶液中的金属离子
朗缪尔吸附模型
金属
化学
解吸
朗缪尔
螯合作用
化学吸附
选择性吸附
弗伦德利希方程
无机化学
有机化学
作者
Shuai Wang,Hao Wang,Shixing Wang,Likang Fu,Libo Zhang
标识
DOI:10.1016/j.seppur.2022.122783
摘要
The removal of lead(II) from wastewater is conducive to reduce the risk of harmful metals to the environment and people. A magnetic organic framework adsorbent (Ni0.6Fe2.4O4-HT-COF) with high selectivity, repeatability and facile solid–liquid separation was devised through the condensation process of hexachlorocyclo-triphosphazene, trithiocyanuric acid and Ni0.6Fe2.4O4. At 298 K and pH = 5.0, the adsorbent showed remarkable Pb(II) adsorption capability. The removal rate reached 95.64 % at 10 min and the maximum adsorption capacity was 411.80 mg/g. The partition coefficient (KQ) of Pb(II) among the seven coexisting ions was 34079 mL/g and the adsorption efficiency was 97.15 %, indicating that the adsorbent can accurately capture Pb(II) from wastewater containing multiple ions. The PSO kinetic and the Langmuir isotherm models agreed with Pb(II) adsorption on Ni0.6Fe2.4O4-HT-COF, demonstrating that Pb(II) was removed by monolayer chemisorption. The adsorption was a spontaneous exothermic process using thermodynamic analysis. In addition, the adsorbent was able to maintain 91.77 % adsorption efficiency for Pb(II) after four adsorption–desorption cycles. Zeta potential and XPS analysis revealed that Ni0.6Fe2.4O4-HT-COF removed Pb(II) by electrostatic attraction and chelation. Density functional theory (DFT) was utilized to simulate the adsorption process, and the effects of different types of atoms on adsorption were discussed. The results demonstrate that the chelation and electrostatic interaction between Ni0.6Fe2.4O4-HT-COF and lead(II) ions were involved in the selective adsorption. The novel magnetic COF has a lot of potential for removing heavy metal Pb(II).
科研通智能强力驱动
Strongly Powered by AbleSci AI