Proteomic Characterisation of the Plasma Proteome in Extramedullary Multiple Myeloma Identifies Potential Prognostic Biomarkers

多发性骨髓瘤 蛋白质组 等离子体电池 医学 计算生物学 病理 癌症研究 生物 免疫学 生物信息学
作者
Katie Dunphy,Despina Bazou,Paul Dowling,Peter O’Gorman
出处
期刊:Blood [American Society of Hematology]
卷期号:140 (Supplement 1): 10058-10059 被引量:1
标识
DOI:10.1182/blood-2022-159935
摘要

Introduction: Extramedullary multiple myeloma (EMM) is an aggressive manifestation of multiple myeloma (MM) reported to occur in approximately 7% of patients at diagnosis and up to 30% of patients at relapse. EMM is characterised by the spread of malignant plasma cells from the bone marrow microenvironment to distal tissues or organs. It is associated with an adverse prognosis, correlating with a significant reduction in overall survival. Currently there are no validated, established biomarkers to predict EMM. Furthermore, EMM is often treated similarly to high-risk MM with no targeted therapeutic strategies. In-depth proteomic studies on EMM are lacking and the underlying molecular mechanisms that facilitate extramedullary transition are yet to be fully defined. Novel biomarkers and therapeutic targets are urgently required. To enhance our understanding of EMM and to identify novel prognostic biomarkers, we performed a mass spectrometry-based proteomic study on plasma from MM patients with and without extramedullary spread. Methods: Label-free liquid chromatography mass spectrometric analysis of age and gender-matched medullary MM (n=8) and EMM (n=9) blood plasma samples was carried out using a Thermo Q-Exactive mass spectrometer (Thermo Fisher Scientific). Proteome Discoverer 2.2 using Sequest HT (Thermo Fisher Scientific) and a percolator were employed for the identification of peptides and proteins. Several parameters were defined for protein identification: MS/MS mass tolerance was set to 0.02 Da; peptide mass tolerance was set to 10ppm; methionine oxidation was set as a variable modification; carbamido-methylation was set as a fixed modification; and up to two missed cleavages were tolerated. Peptide probability was set to high confidence. Data was imported into Perseus (1.6.14.0) for further analysis. Proteins with less than 70% valid values were removed from the analysis. Proteins of interest were identified based on an FDR-adjusted p-value ≤0.1, fold change >1.5 between experimental groups. Six proteins were selected for further validation using DuoSet enzyme linked immunosorbent assay (ELISA) kits (R&D Systems). We performed receiver operating characteristic (ROC) and area under the curve (AUC) analyses to determine the diagnostic potential of the validated proteins. Results: The median age was 65. Survival analysis revealed a statistically significant change in overall survival (OS) between the two patient cohorts (Log-rank = 3.977, P = 0.046). The median OS of patients with EMM and those without extramedullary spread was 19 months and 83 months, respectively. Our quantitative MS-based proteomic analysis identified 21 proteins of differential abundance between EMM and MM patient plasma (False discovery rate (FDR)-adjusted p-value < 0.1, fold change > 1.5) (Fig. 1A). Antibody-based validation using ELISAs was performed on six proteins (vascular cell adhesion molecule 1 (VCAM1), hepatocyte growth factor activator (HGFA), pigment epithelial-derived factor (PEDF), alpha-2-macroglobulin (A2M), cholinesterase (BCHE), aminopeptidase N (CD13)). VCAM1, HGFA and PEDF were confirmed as being significantly altered between the two cohorts (FDR-adjusted p-value < 0.05). VCAM1, HGFA and PEDF were subject to ROC analyses, demonstrating high discriminatory power for EMM diagnosis (AUC = 0.96, AUC = 0.85, and AUC = 0.97, respectively). The diagnostic efficacy was further enhanced by combining these biomarkers using a logistic regression model (AUC = 1). Conclusion: Our mass spectrometry and antibody-based study identified proteins of differential abundance in the blood plasma of MM patients with and without extramedullary spread. VCAM1, PEDF and HGFA represent promising predictive biomarkers and warrant further investigation in a larger cohort of patients. Figure 1View largeDownload PPTFigure 1View largeDownload PPT Close modal

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
li完成签到,获得积分10
刚刚
Stephanie发布了新的文献求助10
2秒前
口腔飞飞完成签到 ,获得积分10
2秒前
充电宝应助翠翠采纳,获得10
2秒前
雨下着的坡道完成签到,获得积分10
4秒前
lisizheng完成签到,获得积分10
4秒前
科研通AI2S应助汤姆采纳,获得10
5秒前
高磊完成签到,获得积分10
5秒前
WZ0904发布了新的文献求助10
5秒前
Akim应助无情向梦采纳,获得10
5秒前
joey完成签到,获得积分10
6秒前
7秒前
所所应助坚强的樱采纳,获得10
7秒前
8秒前
专注秋尽完成签到,获得积分10
8秒前
我的小伙伴应助lisizheng采纳,获得50
8秒前
9秒前
wait完成签到,获得积分10
9秒前
高磊发布了新的文献求助10
10秒前
10秒前
11秒前
潦草发布了新的文献求助10
11秒前
抵澳报了完成签到,获得积分10
11秒前
13秒前
13秒前
14秒前
14秒前
ATAYA发布了新的文献求助10
15秒前
星瑆心发布了新的文献求助10
15秒前
Lazarus_x完成签到,获得积分10
16秒前
whm发布了新的文献求助10
17秒前
豆dou发布了新的文献求助10
19秒前
旭日东升完成签到 ,获得积分10
20秒前
yyyyou完成签到,获得积分10
21秒前
科研通AI5应助xlj采纳,获得10
23秒前
Jenny应助WZ0904采纳,获得10
23秒前
弘一完成签到,获得积分10
23秒前
郑zhenglanyou完成签到 ,获得积分10
24秒前
26秒前
忧子忘完成签到,获得积分10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808