An improved path planning algorithm based on artificial potential field and primal-dual neural network for surgical robot

运动规划 计算机科学 避障 分段 机器人 路径(计算) 人工神经网络 机器人末端执行器 职位(财务) 控制理论(社会学) 算法 模拟 人工智能 数学 移动机器人 控制(管理) 数学分析 经济 财务 程序设计语言
作者
Linjia Hao,Dongdong Liu,Shuxian Du,Yu Wang,Bo Wu,Qian Wang,Nan Zhang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:227: 107202-107202
标识
DOI:10.1016/j.cmpb.2022.107202
摘要

Safety and accuracy are essential for path planning in a surgical navigation system. In this paper, an improved path planning algorithm is proposed to increase the autonomous level of spine surgery robots for higher safety and accuracy. Firstly, the dynamic gravitational constant and piecewise repulsion function are adopted to improve the traditional Artificial Potential Field algorithm to solve the common issues of path planning, including local minimum, unable to reach the target near obstacles. To better control the pose of the end-effector in an operation space, the positions of the two endpoints of the end-effector are further constrained. Secondly, an improved Primal-Dual Neural Network with multiple constraints is proposed to minimize the joint angular velocity norm. The multiple constraints are formulated according to the planned path, the obstacle avoidance of the robot and the joint limits. Moreover, a real-time planned velocity scheme is applied to prevent the accumulation of position errors. The simulation results of the pedicle screw implantation demonstrate that the robot can find the collision-free trajectory and arrive at the target position in various complicated situations. More specifically, the error between two endpoints of the end-effector and the target pose is below 0.1 mm in reaching the surgical tool pose, while the maximum position error is around 0.05 mm when performing the planned path. Moreover, two experiments are conducted in the real-world to verify the proposed algorithm is effective in practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
默默的水桃完成签到,获得积分20
刚刚
白家瑜发布了新的文献求助10
刚刚
冥冥之极为昭昭完成签到,获得积分0
刚刚
刚刚
pika1234完成签到,获得积分20
刚刚
childe发布了新的文献求助10
1秒前
所所应助YLing采纳,获得10
1秒前
orixero应助艾東平采纳,获得10
1秒前
2秒前
吴迪完成签到,获得积分10
2秒前
cnyyp发布了新的文献求助10
3秒前
李健应助酸色黑樱桃采纳,获得30
3秒前
SHAOXiaoqian完成签到 ,获得积分10
4秒前
hujiayue发布了新的文献求助10
4秒前
重击老大发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
吴迪发布了新的文献求助10
5秒前
6秒前
幽默春天发布了新的文献求助10
6秒前
6秒前
TAO完成签到,获得积分10
7秒前
7秒前
小北完成签到,获得积分20
7秒前
852应助GGbond采纳,获得10
8秒前
李健的小迷弟应助GGbond采纳,获得10
8秒前
无花果应助GGbond采纳,获得10
8秒前
CodeCraft应助GGbond采纳,获得10
8秒前
无花果应助GGbond采纳,获得10
8秒前
丘比特应助GGbond采纳,获得10
8秒前
今后应助GGbond采纳,获得10
8秒前
9秒前
dulcetlemon发布了新的文献求助10
9秒前
Vegeta完成签到 ,获得积分10
9秒前
9秒前
10秒前
无名应助DS采纳,获得10
11秒前
11秒前
大个应助幽默春天采纳,获得10
12秒前
吕凯迪发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642013
求助须知:如何正确求助?哪些是违规求助? 4757923
关于积分的说明 15015955
捐赠科研通 4800475
什么是DOI,文献DOI怎么找? 2566095
邀请新用户注册赠送积分活动 1524208
关于科研通互助平台的介绍 1483840