An improved path planning algorithm based on artificial potential field and primal-dual neural network for surgical robot

运动规划 计算机科学 避障 分段 机器人 路径(计算) 人工神经网络 机器人末端执行器 职位(财务) 控制理论(社会学) 算法 模拟 人工智能 数学 移动机器人 控制(管理) 数学分析 经济 财务 程序设计语言
作者
Linjia Hao,Dongdong Liu,Shuxian Du,Yu Wang,Bo Wu,Qian Wang,Nan Zhang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:227: 107202-107202
标识
DOI:10.1016/j.cmpb.2022.107202
摘要

Safety and accuracy are essential for path planning in a surgical navigation system. In this paper, an improved path planning algorithm is proposed to increase the autonomous level of spine surgery robots for higher safety and accuracy. Firstly, the dynamic gravitational constant and piecewise repulsion function are adopted to improve the traditional Artificial Potential Field algorithm to solve the common issues of path planning, including local minimum, unable to reach the target near obstacles. To better control the pose of the end-effector in an operation space, the positions of the two endpoints of the end-effector are further constrained. Secondly, an improved Primal-Dual Neural Network with multiple constraints is proposed to minimize the joint angular velocity norm. The multiple constraints are formulated according to the planned path, the obstacle avoidance of the robot and the joint limits. Moreover, a real-time planned velocity scheme is applied to prevent the accumulation of position errors. The simulation results of the pedicle screw implantation demonstrate that the robot can find the collision-free trajectory and arrive at the target position in various complicated situations. More specifically, the error between two endpoints of the end-effector and the target pose is below 0.1 mm in reaching the surgical tool pose, while the maximum position error is around 0.05 mm when performing the planned path. Moreover, two experiments are conducted in the real-world to verify the proposed algorithm is effective in practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
NexusExplorer应助Dr_JennyZ采纳,获得10
1秒前
各位大牛帮帮忙完成签到,获得积分20
1秒前
1秒前
希望天下0贩的0应助权_888采纳,获得10
1秒前
1秒前
Mxaxxxx发布了新的文献求助10
2秒前
NexusExplorer应助whisper采纳,获得10
2秒前
笑对人生完成签到 ,获得积分10
2秒前
空禅yew发布了新的文献求助10
2秒前
3秒前
lucygaga完成签到 ,获得积分10
3秒前
鹿友菌完成签到,获得积分10
3秒前
chiron发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
田様应助123采纳,获得10
4秒前
在水一方应助jory采纳,获得10
4秒前
4秒前
4秒前
uhuh203发布了新的文献求助10
4秒前
lj发布了新的文献求助10
4秒前
坚定的小馒头完成签到 ,获得积分10
5秒前
zouzou发布了新的文献求助10
5秒前
trumning完成签到,获得积分10
5秒前
共享精神应助方方方方方采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
小脚丫发布了新的文献求助10
6秒前
AAA导弹批发李哥完成签到,获得积分10
6秒前
我是老大应助风中的傲安采纳,获得10
6秒前
hooke发布了新的文献求助10
7秒前
KIC发布了新的文献求助10
8秒前
8秒前
8秒前
含蓄若云完成签到,获得积分10
8秒前
8秒前
研友_VZG7GZ应助林二车娜姆采纳,获得30
8秒前
隐形飞雪完成签到,获得积分10
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719256
求助须知:如何正确求助?哪些是违规求助? 5255673
关于积分的说明 15288302
捐赠科研通 4869143
什么是DOI,文献DOI怎么找? 2614653
邀请新用户注册赠送积分活动 1564667
关于科研通互助平台的介绍 1521894