An improved path planning algorithm based on artificial potential field and primal-dual neural network for surgical robot

运动规划 计算机科学 避障 分段 机器人 路径(计算) 人工神经网络 机器人末端执行器 职位(财务) 控制理论(社会学) 算法 模拟 人工智能 数学 移动机器人 控制(管理) 数学分析 经济 财务 程序设计语言
作者
Linjia Hao,Dongdong Liu,Shuxian Du,Yu Wang,Bo Wu,Qian Wang,Nan Zhang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:227: 107202-107202
标识
DOI:10.1016/j.cmpb.2022.107202
摘要

Safety and accuracy are essential for path planning in a surgical navigation system. In this paper, an improved path planning algorithm is proposed to increase the autonomous level of spine surgery robots for higher safety and accuracy. Firstly, the dynamic gravitational constant and piecewise repulsion function are adopted to improve the traditional Artificial Potential Field algorithm to solve the common issues of path planning, including local minimum, unable to reach the target near obstacles. To better control the pose of the end-effector in an operation space, the positions of the two endpoints of the end-effector are further constrained. Secondly, an improved Primal-Dual Neural Network with multiple constraints is proposed to minimize the joint angular velocity norm. The multiple constraints are formulated according to the planned path, the obstacle avoidance of the robot and the joint limits. Moreover, a real-time planned velocity scheme is applied to prevent the accumulation of position errors. The simulation results of the pedicle screw implantation demonstrate that the robot can find the collision-free trajectory and arrive at the target position in various complicated situations. More specifically, the error between two endpoints of the end-effector and the target pose is below 0.1 mm in reaching the surgical tool pose, while the maximum position error is around 0.05 mm when performing the planned path. Moreover, two experiments are conducted in the real-world to verify the proposed algorithm is effective in practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
倾听阳光完成签到 ,获得积分10
3秒前
笨笨青筠完成签到 ,获得积分10
3秒前
怡然的复天完成签到,获得积分10
4秒前
GingerF应助昏睡的蟠桃采纳,获得200
6秒前
科研通AI6应助阿辉采纳,获得10
7秒前
13秒前
Brenda完成签到,获得积分10
17秒前
酸酸完成签到 ,获得积分10
18秒前
Tom完成签到,获得积分10
20秒前
Hello应助Siliang采纳,获得10
22秒前
酸酸关注了科研通微信公众号
23秒前
keyanlv完成签到,获得积分10
28秒前
子苓完成签到 ,获得积分10
28秒前
bing完成签到,获得积分10
29秒前
zxj完成签到,获得积分10
30秒前
hwl26完成签到,获得积分10
31秒前
SARON完成签到 ,获得积分10
34秒前
锥子完成签到,获得积分10
36秒前
路路完成签到 ,获得积分10
38秒前
陶军辉完成签到 ,获得积分10
39秒前
感动清炎完成签到,获得积分10
41秒前
41秒前
wanci应助科研通管家采纳,获得10
41秒前
pluto应助科研通管家采纳,获得10
41秒前
chrisio应助科研通管家采纳,获得10
41秒前
浮游应助科研通管家采纳,获得10
41秒前
852应助科研通管家采纳,获得10
41秒前
Clara应助科研通管家采纳,获得10
41秒前
子车茗应助科研通管家采纳,获得10
41秒前
pluto应助科研通管家采纳,获得10
42秒前
Tao应助科研通管家采纳,获得10
42秒前
BareBear应助科研通管家采纳,获得10
42秒前
pluto应助科研通管家采纳,获得10
42秒前
ludong_0应助科研通管家采纳,获得10
42秒前
无极微光应助科研通管家采纳,获得20
42秒前
BareBear应助科研通管家采纳,获得10
42秒前
pluto应助科研通管家采纳,获得10
42秒前
子车茗应助科研通管家采纳,获得10
42秒前
BareBear应助科研通管家采纳,获得10
42秒前
BareBear应助科研通管家采纳,获得10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498677
求助须知:如何正确求助?哪些是违规求助? 4595836
关于积分的说明 14450003
捐赠科研通 4528827
什么是DOI,文献DOI怎么找? 2481735
邀请新用户注册赠送积分活动 1465732
关于科研通互助平台的介绍 1438581