An improved path planning algorithm based on artificial potential field and primal-dual neural network for surgical robot

运动规划 计算机科学 避障 分段 机器人 路径(计算) 人工神经网络 机器人末端执行器 职位(财务) 控制理论(社会学) 算法 模拟 人工智能 数学 移动机器人 控制(管理) 数学分析 经济 财务 程序设计语言
作者
Linjia Hao,Dongdong Liu,Shuxian Du,Yu Wang,Bo Wu,Qian Wang,Nan Zhang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:227: 107202-107202
标识
DOI:10.1016/j.cmpb.2022.107202
摘要

Safety and accuracy are essential for path planning in a surgical navigation system. In this paper, an improved path planning algorithm is proposed to increase the autonomous level of spine surgery robots for higher safety and accuracy. Firstly, the dynamic gravitational constant and piecewise repulsion function are adopted to improve the traditional Artificial Potential Field algorithm to solve the common issues of path planning, including local minimum, unable to reach the target near obstacles. To better control the pose of the end-effector in an operation space, the positions of the two endpoints of the end-effector are further constrained. Secondly, an improved Primal-Dual Neural Network with multiple constraints is proposed to minimize the joint angular velocity norm. The multiple constraints are formulated according to the planned path, the obstacle avoidance of the robot and the joint limits. Moreover, a real-time planned velocity scheme is applied to prevent the accumulation of position errors. The simulation results of the pedicle screw implantation demonstrate that the robot can find the collision-free trajectory and arrive at the target position in various complicated situations. More specifically, the error between two endpoints of the end-effector and the target pose is below 0.1 mm in reaching the surgical tool pose, while the maximum position error is around 0.05 mm when performing the planned path. Moreover, two experiments are conducted in the real-world to verify the proposed algorithm is effective in practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wy18567337203发布了新的文献求助10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
风中谷云给风中谷云的求助进行了留言
1秒前
淡然的胡萝卜完成签到 ,获得积分10
2秒前
3秒前
茹茹完成签到 ,获得积分10
3秒前
jiu九发布了新的文献求助10
3秒前
zhang-leo完成签到,获得积分10
4秒前
健康的小鸽子完成签到 ,获得积分10
4秒前
CCKaomi发布了新的文献求助10
5秒前
5秒前
隐形曼青应助Aurora采纳,获得10
6秒前
6秒前
星辰大海应助8787采纳,获得10
6秒前
科研yu完成签到,获得积分10
6秒前
淇有此理发布了新的文献求助10
7秒前
ding应助wy18567337203采纳,获得10
7秒前
tjt发布了新的文献求助10
8秒前
Qiancheni完成签到,获得积分10
9秒前
zhang-leo发布了新的文献求助10
9秒前
9秒前
9秒前
俗签完成签到,获得积分10
9秒前
三三发布了新的文献求助10
10秒前
11秒前
赵千灵完成签到,获得积分10
11秒前
好地方发布了新的文献求助10
11秒前
Ava应助沉默不评采纳,获得10
11秒前
shanshan完成签到 ,获得积分10
12秒前
13秒前
疏水无纺布完成签到,获得积分10
13秒前
hugh完成签到,获得积分10
13秒前
13秒前
xyzlancet完成签到,获得积分10
13秒前
14秒前
王志鹏发布了新的文献求助10
14秒前
14秒前
平常的铅笔完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5708093
求助须知:如何正确求助?哪些是违规求助? 5186941
关于积分的说明 15252667
捐赠科研通 4861172
什么是DOI,文献DOI怎么找? 2609274
邀请新用户注册赠送积分活动 1559914
关于科研通互助平台的介绍 1517692