已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An improved path planning algorithm based on artificial potential field and primal-dual neural network for surgical robot

运动规划 计算机科学 避障 分段 机器人 路径(计算) 人工神经网络 机器人末端执行器 职位(财务) 控制理论(社会学) 算法 模拟 人工智能 数学 移动机器人 控制(管理) 数学分析 经济 财务 程序设计语言
作者
Linjia Hao,Dongdong Liu,Shuxian Du,Yu Wang,Bo Wu,Qian Wang,Nan Zhang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:227: 107202-107202
标识
DOI:10.1016/j.cmpb.2022.107202
摘要

Safety and accuracy are essential for path planning in a surgical navigation system. In this paper, an improved path planning algorithm is proposed to increase the autonomous level of spine surgery robots for higher safety and accuracy. Firstly, the dynamic gravitational constant and piecewise repulsion function are adopted to improve the traditional Artificial Potential Field algorithm to solve the common issues of path planning, including local minimum, unable to reach the target near obstacles. To better control the pose of the end-effector in an operation space, the positions of the two endpoints of the end-effector are further constrained. Secondly, an improved Primal-Dual Neural Network with multiple constraints is proposed to minimize the joint angular velocity norm. The multiple constraints are formulated according to the planned path, the obstacle avoidance of the robot and the joint limits. Moreover, a real-time planned velocity scheme is applied to prevent the accumulation of position errors. The simulation results of the pedicle screw implantation demonstrate that the robot can find the collision-free trajectory and arrive at the target position in various complicated situations. More specifically, the error between two endpoints of the end-effector and the target pose is below 0.1 mm in reaching the surgical tool pose, while the maximum position error is around 0.05 mm when performing the planned path. Moreover, two experiments are conducted in the real-world to verify the proposed algorithm is effective in practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
多情的垣完成签到,获得积分10
1秒前
yuyuyu发布了新的文献求助10
2秒前
英俊的铭应助从嘉采纳,获得10
3秒前
3秒前
4秒前
初夏发布了新的文献求助10
4秒前
5秒前
5秒前
无尽夏完成签到 ,获得积分10
7秒前
7秒前
8秒前
小蘑菇应助mgl采纳,获得10
8秒前
8秒前
zyw发布了新的文献求助10
9秒前
打打应助zzzdx采纳,获得10
10秒前
哈哈哈发布了新的文献求助10
10秒前
kitty发布了新的文献求助10
12秒前
xiaofeiyan完成签到 ,获得积分10
13秒前
15秒前
Orange应助珷玞采纳,获得10
15秒前
蝴蝶飞出了潜水钟完成签到,获得积分10
16秒前
入变完成签到 ,获得积分10
17秒前
一丁雨发布了新的文献求助10
19秒前
19秒前
斯文败类应助kitty采纳,获得10
19秒前
暴躁的梦发布了新的文献求助10
19秒前
19秒前
21秒前
22秒前
Kaaaly关注了科研通微信公众号
22秒前
xiaoxiao发布了新的文献求助40
22秒前
slender完成签到,获得积分20
23秒前
猪猪侠发布了新的文献求助10
23秒前
allshestar完成签到 ,获得积分0
24秒前
25秒前
mgl发布了新的文献求助10
25秒前
Janny完成签到,获得积分10
25秒前
RC_Wang发布了新的文献求助10
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779123
求助须知:如何正确求助?哪些是违规求助? 5645950
关于积分的说明 15451285
捐赠科研通 4910582
什么是DOI,文献DOI怎么找? 2642743
邀请新用户注册赠送积分活动 1590446
关于科研通互助平台的介绍 1544810