Dual-feature-embeddings-based semi-supervised learning for cognitive engagement classification in online course discussions

计算机科学 人工智能 机器学习 认知 自然语言处理 特征(语言学) 对偶(语法数字) 监督学习 语义学(计算机科学) 模式识别(心理学) 人工神经网络 艺术 哲学 语言学 文学类 神经科学 生物 程序设计语言
作者
Zhi Liu,Weizheng Kong,Xian Peng,Zongkai Yang,Sannyuya Liu,Shiqi Liu,Chaodong Wen
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:259: 110053-110053 被引量:12
标识
DOI:10.1016/j.knosys.2022.110053
摘要

Online course discussions contain abundant cognitive information from learners. Previous models required a large amount of labeled data to classify cognitive engagement from the perspective of semantic features alone. However, these models only contain semantic features but cannot fully represent textual information and have poor performance in cases of scarce labeled data. Moreover, cognitive psychological features imply important information that cannot be captured by semantic features. Therefore, this paper proposes a dual feature embedding-based semi-supervised cognitive classification method that exploits the additional inductive biases caused by implicit cognitive features to supplement generic semantic features. Additional inductive biases facilitate the propagation of labeled and unlabeled data and improve the consistency between unlabeled and augmented data. Unsupervised data augmentation (UDA) is used to obtain augmented data by inserting advanced noise into unlabeled data in semi-supervised learning. Furthermore, bidirectional encoder representations from transformers (BERT) are used to extract generic semantics, and linguistic inquiry and word count (LIWC) are adopted to fetch implicit cognitive features from discussion texts. Therefore, we refer to the proposed method as B-LIWC-UDA, sequentially fusing the dual features in the explicit and hidden levels to obtain dual feature embeddings. The cognitive engagement classification model was trained using supervised and consistent training methods. We conducted experiments using datasets obtained from two real-world online course discussions. The experimental results demonstrate that, in terms of major evaluation metrics, the proposed B-LIWC-UDA method performs better than state-of-the-art text classification methods used for identifying cognitive engagement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ghost发布了新的文献求助10
1秒前
orixero应助笑笑采纳,获得10
2秒前
少年发布了新的文献求助10
5秒前
7秒前
10秒前
canjian1943发布了新的文献求助10
11秒前
12秒前
13秒前
www发布了新的文献求助10
13秒前
14秒前
繁荣的过客完成签到 ,获得积分10
14秒前
14秒前
bkagyin应助ghost采纳,获得10
15秒前
16秒前
16秒前
16秒前
MM发布了新的文献求助20
17秒前
17秒前
鹏程完成签到 ,获得积分10
18秒前
24关注了科研通微信公众号
19秒前
20秒前
秋雅发布了新的文献求助10
21秒前
叙温雨发布了新的文献求助10
21秒前
怀良辰完成签到,获得积分10
22秒前
超级的友绿完成签到,获得积分10
22秒前
zyz完成签到,获得积分10
22秒前
24秒前
无花果应助仁爱发卡采纳,获得10
26秒前
orixero应助王仙人采纳,获得10
26秒前
26秒前
27秒前
唯有发布了新的文献求助30
27秒前
zzz发布了新的文献求助10
29秒前
只只完成签到 ,获得积分20
30秒前
美好斓发布了新的文献求助30
30秒前
2014689032应助kento采纳,获得50
33秒前
王仙人完成签到,获得积分10
35秒前
35秒前
24发布了新的文献求助10
37秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149259
求助须知:如何正确求助?哪些是违规求助? 2800349
关于积分的说明 7839651
捐赠科研通 2457913
什么是DOI,文献DOI怎么找? 1308138
科研通“疑难数据库(出版商)”最低求助积分说明 628456
版权声明 601706