Dual-feature-embeddings-based semi-supervised learning for cognitive engagement classification in online course discussions

计算机科学 人工智能 机器学习 认知 自然语言处理 特征(语言学) 对偶(语法数字) 监督学习 语义学(计算机科学) 模式识别(心理学) 人工神经网络 艺术 哲学 语言学 文学类 神经科学 生物 程序设计语言
作者
Zhi Liu,Weizheng Kong,Xian Peng,Zongkai Yang,Sannyuya Liu,Shiqi Liu,Chaodong Wen
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:259: 110053-110053 被引量:12
标识
DOI:10.1016/j.knosys.2022.110053
摘要

Online course discussions contain abundant cognitive information from learners. Previous models required a large amount of labeled data to classify cognitive engagement from the perspective of semantic features alone. However, these models only contain semantic features but cannot fully represent textual information and have poor performance in cases of scarce labeled data. Moreover, cognitive psychological features imply important information that cannot be captured by semantic features. Therefore, this paper proposes a dual feature embedding-based semi-supervised cognitive classification method that exploits the additional inductive biases caused by implicit cognitive features to supplement generic semantic features. Additional inductive biases facilitate the propagation of labeled and unlabeled data and improve the consistency between unlabeled and augmented data. Unsupervised data augmentation (UDA) is used to obtain augmented data by inserting advanced noise into unlabeled data in semi-supervised learning. Furthermore, bidirectional encoder representations from transformers (BERT) are used to extract generic semantics, and linguistic inquiry and word count (LIWC) are adopted to fetch implicit cognitive features from discussion texts. Therefore, we refer to the proposed method as B-LIWC-UDA, sequentially fusing the dual features in the explicit and hidden levels to obtain dual feature embeddings. The cognitive engagement classification model was trained using supervised and consistent training methods. We conducted experiments using datasets obtained from two real-world online course discussions. The experimental results demonstrate that, in terms of major evaluation metrics, the proposed B-LIWC-UDA method performs better than state-of-the-art text classification methods used for identifying cognitive engagement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liu完成签到,获得积分10
1秒前
LWJ发布了新的文献求助10
2秒前
3秒前
大反应釜完成签到,获得积分10
3秒前
TT发布了新的文献求助10
6秒前
Jenny发布了新的文献求助10
8秒前
8秒前
完美凝竹发布了新的文献求助10
8秒前
我是站长才怪应助细腻沅采纳,获得10
9秒前
JG完成签到 ,获得积分10
9秒前
hhh完成签到,获得积分20
9秒前
科研通AI5应助想瘦的海豹采纳,获得10
10秒前
随性完成签到 ,获得积分10
10秒前
自由的信仰完成签到,获得积分10
11秒前
13秒前
14秒前
14秒前
夏夏发布了新的文献求助10
15秒前
打打应助Hangerli采纳,获得10
17秒前
完美凝竹完成签到,获得积分10
18秒前
zfzf0422发布了新的文献求助10
19秒前
蜘蛛道理完成签到 ,获得积分10
19秒前
冷傲迎梦发布了新的文献求助10
20秒前
852应助MEME采纳,获得10
20秒前
Godzilla发布了新的文献求助10
20秒前
大模型应助咕噜仔采纳,获得10
21秒前
蒋时晏应助pharmstudent采纳,获得30
21秒前
22秒前
忘羡222发布了新的文献求助20
23秒前
魏伯安发布了新的文献求助10
23秒前
24秒前
不爱吃糖完成签到,获得积分10
24秒前
25秒前
balabala发布了新的文献求助10
26秒前
睿123456完成签到,获得积分10
27秒前
此话当真完成签到,获得积分10
28秒前
30秒前
慕青应助wmmm采纳,获得10
31秒前
科研通AI2S应助夏夏采纳,获得10
31秒前
隐形曼青应助夏夏采纳,获得10
31秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824