Li-SegPNet: Encoder-Decoder Mode Lightweight Segmentation Network for Colorectal Polyps Analysis

计算机科学 编码器 人工智能 联营 掷骰子 分割 水准点(测量) 棱锥(几何) 模式识别(心理学) 判别式 图像分割 特征(语言学) 数学 哲学 操作系统 语言学 几何学 物理 大地测量学 光学 地理
作者
Pallabi Sharma,Anmol Gautam,Pallab Maji,Ram Bilas Pachori,Bunil Kumar Balabantaray
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:70 (4): 1330-1339 被引量:28
标识
DOI:10.1109/tbme.2022.3216269
摘要

One of the fundamental and crucial tasks for the automated diagnosis of colorectal cancer is the segmentation of the acute gastrointestinal lesions, most commonly colorectal polyps. Therefore, in this work, we present a novel lightweight encoder-decoder mode of architecture with the attention mechanism to address this challenging task.The proposed Li-SegPNet architecture harnesses cross-dimensional interaction in feature maps with novel encoder block with modified triplet attention. We have used atrous spatial pyramid pooling to handle the problem of segmenting objects at multiple scales. We also address the semantic gap between the encoder and decoder through a modified skip connection using attention gating.We applied our model to colonoscopy still images and trained and validated it on two publicly available datasets, Kvasir-SEG and CVC-ClinicDB. We achieve mean Intersection-Over-Union (mIoU) and dice scores of 0.88, 0.9058 and 0.8969, 0.9372 on Kvasir-SEG and CVC-ClinicDB, respectively. We analyze the generalizability of Li-SegPNet by testing it on two independent previously unseen datasets, Hyper-Kvasir and EndoTect 2020, and establish the model efficiency in cross-dataset evaluation. We employ multi-scale testing to examine the model performance on different sizes of polyps. Li-SegPNet performs best on medium-sized polyps with a mIoU and dice score of 0.9086 and 0.9137, respectively on the Kvasir-SEG dataset and 0.9425, 0.9434 of mIoU and dice score, respectively on CVC-ClinicDB.The experimental results convey that we establish a new benchmark on these four datasets for the segmentation of polyps.The proposed model can be used as a new benchmark model for polyps segmentation. Lesser parameters in comparison to other models give the edge in the applicability of the proposed Li-SegPNet model in real-time clinical analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wubinbin发布了新的文献求助10
4秒前
joker_tao完成签到,获得积分10
9秒前
caidan发布了新的文献求助10
15秒前
花开四海发布了新的文献求助50
16秒前
Chemistry发布了新的文献求助10
21秒前
neonsun完成签到,获得积分10
23秒前
28秒前
科研通AI2S应助芳芳采纳,获得10
30秒前
31秒前
冯123发布了新的文献求助10
33秒前
33秒前
Thnine发布了新的文献求助30
38秒前
1900完成签到,获得积分10
39秒前
39秒前
40秒前
桐桐应助Jenny采纳,获得10
40秒前
caidan发布了新的文献求助10
42秒前
44秒前
44秒前
fsky发布了新的文献求助10
46秒前
48秒前
48秒前
49秒前
雪糕发布了新的文献求助10
50秒前
酷波er应助科研通管家采纳,获得10
51秒前
丘比特应助科研通管家采纳,获得10
51秒前
小二郎应助科研通管家采纳,获得10
51秒前
脑洞疼应助科研通管家采纳,获得10
51秒前
星辰大海应助科研通管家采纳,获得10
51秒前
51秒前
53秒前
刘佳琦19947完成签到,获得积分20
1分钟前
今后应助H先生采纳,获得10
1分钟前
iMoney完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
明月完成签到,获得积分10
1分钟前
彭于晏应助永日安宁采纳,获得10
1分钟前
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
中国荞麦品种志 1000
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3359100
求助须知:如何正确求助?哪些是违规求助? 2982036
关于积分的说明 8701767
捐赠科研通 2663644
什么是DOI,文献DOI怎么找? 1458557
科研通“疑难数据库(出版商)”最低求助积分说明 675164
邀请新用户注册赠送积分活动 666231