亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Li-SegPNet: Encoder-Decoder Mode Lightweight Segmentation Network for Colorectal Polyps Analysis

计算机科学 编码器 人工智能 联营 掷骰子 分割 水准点(测量) 棱锥(几何) 模式识别(心理学) 判别式 图像分割 特征(语言学) 数学 哲学 操作系统 语言学 几何学 物理 大地测量学 光学 地理
作者
Pallabi Sharma,Anmol Gautam,Pallab Maji,Ram Bilas Pachori,Bunil Kumar Balabantaray
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:70 (4): 1330-1339 被引量:37
标识
DOI:10.1109/tbme.2022.3216269
摘要

One of the fundamental and crucial tasks for the automated diagnosis of colorectal cancer is the segmentation of the acute gastrointestinal lesions, most commonly colorectal polyps. Therefore, in this work, we present a novel lightweight encoder-decoder mode of architecture with the attention mechanism to address this challenging task.The proposed Li-SegPNet architecture harnesses cross-dimensional interaction in feature maps with novel encoder block with modified triplet attention. We have used atrous spatial pyramid pooling to handle the problem of segmenting objects at multiple scales. We also address the semantic gap between the encoder and decoder through a modified skip connection using attention gating.We applied our model to colonoscopy still images and trained and validated it on two publicly available datasets, Kvasir-SEG and CVC-ClinicDB. We achieve mean Intersection-Over-Union (mIoU) and dice scores of 0.88, 0.9058 and 0.8969, 0.9372 on Kvasir-SEG and CVC-ClinicDB, respectively. We analyze the generalizability of Li-SegPNet by testing it on two independent previously unseen datasets, Hyper-Kvasir and EndoTect 2020, and establish the model efficiency in cross-dataset evaluation. We employ multi-scale testing to examine the model performance on different sizes of polyps. Li-SegPNet performs best on medium-sized polyps with a mIoU and dice score of 0.9086 and 0.9137, respectively on the Kvasir-SEG dataset and 0.9425, 0.9434 of mIoU and dice score, respectively on CVC-ClinicDB.The experimental results convey that we establish a new benchmark on these four datasets for the segmentation of polyps.The proposed model can be used as a new benchmark model for polyps segmentation. Lesser parameters in comparison to other models give the edge in the applicability of the proposed Li-SegPNet model in real-time clinical analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
友好碧完成签到 ,获得积分10
2秒前
乐观的月亮完成签到,获得积分10
7秒前
7秒前
zhuxiaoyue发布了新的文献求助10
7秒前
打打应助辉辉采纳,获得10
7秒前
美美完成签到,获得积分20
9秒前
12秒前
14秒前
16秒前
BeanHahn发布了新的文献求助10
16秒前
17秒前
阿离完成签到,获得积分10
18秒前
20秒前
无题完成签到,获得积分10
20秒前
辉辉发布了新的文献求助10
21秒前
23秒前
24秒前
26秒前
科研通AI6应助科研通管家采纳,获得10
27秒前
小蘑菇应助科研通管家采纳,获得10
27秒前
28秒前
29秒前
chenyue233完成签到,获得积分10
29秒前
specium发布了新的文献求助10
31秒前
chenyue233发布了新的文献求助10
35秒前
大个应助ECD采纳,获得10
36秒前
37秒前
42秒前
BeanHahn完成签到,获得积分10
45秒前
_u_ii发布了新的文献求助10
46秒前
辉辉完成签到,获得积分10
46秒前
48秒前
Orange应助Eris采纳,获得10
49秒前
52秒前
zcr完成签到,获得积分10
53秒前
久等雨归完成签到,获得积分10
55秒前
56秒前
1分钟前
今后应助白晔采纳,获得10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714225
求助须知:如何正确求助?哪些是违规求助? 5221821
关于积分的说明 15272955
捐赠科研通 4865714
什么是DOI,文献DOI怎么找? 2612313
邀请新用户注册赠送积分活动 1562449
关于科研通互助平台的介绍 1519671