材料科学
电介质
陶瓷
铁电性
极化(电化学)
储能
电容器
磁滞
离子键合
电场
电压
工程物理
凝聚态物理
复合材料
纳米技术
光电子学
离子
电气工程
热力学
物理化学
量子力学
功率(物理)
工程类
物理
化学
作者
Leiyang Zhang,A-Mei Zhang,Hou Hongping,Zhuang Miao,Jia Liu,Xin Wang,Hongliang Du,Li Jin
标识
DOI:10.1016/j.ceramint.2022.10.297
摘要
Because of their possible applications in dielectric energy-storage capacitor devices, (Bi0.5Na0.5)TiO3-based (BNT) relaxor ferroelectric (RFE) ceramics are feasible alternatives to lead-containing electroceramics. Good energy-storage performance (ESP), including high recoverable energy density (Wrec) and good energy discharge efficiency (η), is required to achieve device miniaturization and long device lifetimes. An advanced method was used to overcome the challenges of A-site ionic disordered RFE in achieving high inducible polarization and low hysteresis, with the former dictating a large Wrec and the latter dictating a high η. In this study, an ABO3 perovskite-structured complex end-member Bi(Mg2/3Nb1/3)O3 (BMN) was added to a 0.7Bi0.5Na0.4K0.1TiO3–0.3Ba0.5Sr0.5TiO3 (0.7BNKT–0.3BST) matrix. The differences in the valence states and ionic radii of Mg2+, Ti4+, and Nb5+ increased the local electric field fluctuation, which contributed to the expanded dielectric relaxation properties. The combined substantial prevention of hysteresis and remanent polarization suggests high potential applicability for ESP. Finally, an enhancement in Wrec to 4.98 J/cm3 was achieved in 0.595BNKT–0.255BST–0.15BMN with an ultrahigh η of 97.3% in a medium-strength electric field of 300 kV/cm. The ESP also demonstrated good thermostability between 30 and 120 °C. Furthermore, the strategy used in this study to generate RFEs can serve as a guide for future research.
科研通智能强力驱动
Strongly Powered by AbleSci AI