Recent Progress in Learning Algorithms Applied in Energy Management of Hybrid Vehicles: A Comprehensive Review

计算机科学 人工智能 算法 强化学习 机器学习
作者
Dezhou Xu,Chunhua Zheng,Yunduan Cui,Shengxiang Fu,Nam Wook Kim,Suk Won
出处
期刊:International Journal of Precision Engineering and Manufacturing-Green Technology [Springer Science+Business Media]
卷期号:10 (1): 245-267 被引量:5
标识
DOI:10.1007/s40684-022-00476-2
摘要

Hybrid vehicles (HVs) that equip at least two different energy sources have been proven to be one of effective and promising solutions to mitigate the issues of energy crisis and environmental pollution. For HVs, one of the core supervisory control problems is the power distribution among multiple power sources, and for this problem, energy management strategies (EMSs) have been studied to save energy and extend the service life of HVs. In recent years, with the rapid development of artificial intelligence and computer technologies, learning algorithms have been gradually applied to the EMS field and shortly become a novel research hotspot. Although there are some brief reviews on the learning-based (LB) EMSs for HVs in recent years, a state-of-the-art and thorough review related to the applications of learning algorithms in HV EMSs still lacks. In this paper, learning algorithms applied in HV EMSs are categorized and reviewed in terms of the reinforcement learning algorithms and deep reinforcement learning algorithms. Apart from presenting the recent progress of learning algorithms applied in HV EMSs, advantages and disadvantages of different learning algorithms and LB EMSs are also discussed. Finally, a brief outlook related to the further applications of learning algorithms in HV EMSs, such as the integration towards autonomous driving and intelligent transportation system, is presented.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
一一发布了新的文献求助10
1秒前
1秒前
大模型应助典雅迎夏采纳,获得10
2秒前
2秒前
2秒前
3秒前
3秒前
多云发布了新的文献求助10
4秒前
Jason发布了新的文献求助10
4秒前
科研小白完成签到,获得积分10
4秒前
4秒前
HI4发布了新的文献求助10
5秒前
WSR发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
小马甲应助TT001采纳,获得30
6秒前
windli完成签到,获得积分10
6秒前
苦逼生信人完成签到,获得积分20
6秒前
7秒前
7秒前
7秒前
8秒前
9秒前
shuishui发布了新的文献求助10
10秒前
TN发布了新的文献求助10
10秒前
10秒前
科研通AI5应助鲤鱼诗桃采纳,获得10
10秒前
11秒前
李小雨发布了新的文献求助30
11秒前
xunl发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
潇洒怀曼发布了新的文献求助10
12秒前
张瑜完成签到,获得积分10
13秒前
13秒前
功夫发布了新的文献求助10
13秒前
HuLL发布了新的文献求助10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5088664
求助须知:如何正确求助?哪些是违规求助? 4303552
关于积分的说明 13411963
捐赠科研通 4129232
什么是DOI,文献DOI怎么找? 2261304
邀请新用户注册赠送积分活动 1265411
关于科研通互助平台的介绍 1199913