清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Recent Progress in Learning Algorithms Applied in Energy Management of Hybrid Vehicles: A Comprehensive Review

计算机科学 人工智能 算法 强化学习 机器学习
作者
Dezhou Xu,Chunhua Zheng,Yunduan Cui,Shengxiang Fu,Nam Wook Kim,Suk Won
出处
期刊:International Journal of Precision Engineering and Manufacturing-Green Technology [Springer Nature]
卷期号:10 (1): 245-267 被引量:5
标识
DOI:10.1007/s40684-022-00476-2
摘要

Hybrid vehicles (HVs) that equip at least two different energy sources have been proven to be one of effective and promising solutions to mitigate the issues of energy crisis and environmental pollution. For HVs, one of the core supervisory control problems is the power distribution among multiple power sources, and for this problem, energy management strategies (EMSs) have been studied to save energy and extend the service life of HVs. In recent years, with the rapid development of artificial intelligence and computer technologies, learning algorithms have been gradually applied to the EMS field and shortly become a novel research hotspot. Although there are some brief reviews on the learning-based (LB) EMSs for HVs in recent years, a state-of-the-art and thorough review related to the applications of learning algorithms in HV EMSs still lacks. In this paper, learning algorithms applied in HV EMSs are categorized and reviewed in terms of the reinforcement learning algorithms and deep reinforcement learning algorithms. Apart from presenting the recent progress of learning algorithms applied in HV EMSs, advantages and disadvantages of different learning algorithms and LB EMSs are also discussed. Finally, a brief outlook related to the further applications of learning algorithms in HV EMSs, such as the integration towards autonomous driving and intelligent transportation system, is presented.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
末末完成签到 ,获得积分10
11秒前
pegasus0802完成签到,获得积分10
17秒前
18秒前
35秒前
锦鲤发布了新的文献求助10
41秒前
朴蒲萤荧完成签到,获得积分10
47秒前
49秒前
科研通AI6应助科研通管家采纳,获得10
50秒前
完美世界应助科研通管家采纳,获得10
50秒前
科研通AI6应助科研通管家采纳,获得10
50秒前
科研通AI6应助科研通管家采纳,获得10
50秒前
Chen应助科研通管家采纳,获得10
50秒前
完美世界应助科研通管家采纳,获得10
50秒前
科研通AI6应助科研通管家采纳,获得10
50秒前
科研通AI6应助科研通管家采纳,获得10
50秒前
科研通AI6应助科研通管家采纳,获得10
50秒前
Chen应助科研通管家采纳,获得10
50秒前
科研通AI6应助科研通管家采纳,获得10
51秒前
科研通AI6应助科研通管家采纳,获得10
51秒前
科研通AI6应助科研通管家采纳,获得10
51秒前
科研通AI6应助科研通管家采纳,获得10
51秒前
科研通AI6应助科研通管家采纳,获得10
51秒前
科研通AI6应助科研通管家采纳,获得10
51秒前
科研通AI6应助科研通管家采纳,获得10
51秒前
科研通AI6应助科研通管家采纳,获得10
51秒前
54秒前
1分钟前
坚定的剑心完成签到,获得积分10
1分钟前
丘比特应助锦鲤采纳,获得10
1分钟前
大雁完成签到 ,获得积分0
1分钟前
1分钟前
微卫星不稳定完成签到 ,获得积分0
1分钟前
hyxu678完成签到,获得积分10
1分钟前
hugeyoung完成签到,获得积分10
1分钟前
2分钟前
2分钟前
FashionBoy应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
Ägyptische Geschichte der 21.–30. Dynastie 1520
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739962
求助须知:如何正确求助?哪些是违规求助? 5391876
关于积分的说明 15340195
捐赠科研通 4882272
什么是DOI,文献DOI怎么找? 2624290
邀请新用户注册赠送积分活动 1573011
关于科研通互助平台的介绍 1529897