Recent Progress in Learning Algorithms Applied in Energy Management of Hybrid Vehicles: A Comprehensive Review

计算机科学 人工智能 算法 强化学习 机器学习
作者
Dezhou Xu,Chunhua Zheng,Yunduan Cui,Shengxiang Fu,Nam Wook Kim,Suk Won
出处
期刊:International Journal of Precision Engineering and Manufacturing-Green Technology [Springer Nature]
卷期号:10 (1): 245-267 被引量:5
标识
DOI:10.1007/s40684-022-00476-2
摘要

Hybrid vehicles (HVs) that equip at least two different energy sources have been proven to be one of effective and promising solutions to mitigate the issues of energy crisis and environmental pollution. For HVs, one of the core supervisory control problems is the power distribution among multiple power sources, and for this problem, energy management strategies (EMSs) have been studied to save energy and extend the service life of HVs. In recent years, with the rapid development of artificial intelligence and computer technologies, learning algorithms have been gradually applied to the EMS field and shortly become a novel research hotspot. Although there are some brief reviews on the learning-based (LB) EMSs for HVs in recent years, a state-of-the-art and thorough review related to the applications of learning algorithms in HV EMSs still lacks. In this paper, learning algorithms applied in HV EMSs are categorized and reviewed in terms of the reinforcement learning algorithms and deep reinforcement learning algorithms. Apart from presenting the recent progress of learning algorithms applied in HV EMSs, advantages and disadvantages of different learning algorithms and LB EMSs are also discussed. Finally, a brief outlook related to the further applications of learning algorithms in HV EMSs, such as the integration towards autonomous driving and intelligent transportation system, is presented.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助riotzoov采纳,获得10
刚刚
1秒前
汉堡包应助san行采纳,获得10
4秒前
5秒前
无花果应助清新的静枫采纳,获得10
5秒前
cdu应助飞云采纳,获得30
6秒前
6秒前
竹筏过海应助PPFF采纳,获得30
7秒前
7秒前
糖果发布了新的文献求助10
9秒前
xxxxx完成签到,获得积分20
11秒前
幽默以晴发布了新的文献求助10
11秒前
Ann完成签到,获得积分10
12秒前
36524关注了科研通微信公众号
13秒前
san行完成签到,获得积分20
13秒前
tanglu发布了新的文献求助10
14秒前
聋哑时代完成签到,获得积分10
15秒前
16秒前
阿曲关注了科研通微信公众号
16秒前
19秒前
orixero应助猴子请来的救兵采纳,获得10
19秒前
无辜又菡发布了新的文献求助10
20秒前
现实的洋葱完成签到 ,获得积分10
20秒前
szong完成签到,获得积分10
21秒前
灭亡发布了新的文献求助10
21秒前
李健的小迷弟应助糖果采纳,获得10
22秒前
大魁发布了新的文献求助10
23秒前
桂花发布了新的文献求助10
23秒前
24秒前
藏马发布了新的文献求助10
24秒前
25秒前
开坦克的贝塔完成签到,获得积分10
26秒前
阿黎完成签到,获得积分10
27秒前
传奇3应助剪影改采纳,获得10
28秒前
36524发布了新的文献求助10
29秒前
30秒前
31秒前
大佬完成签到,获得积分10
32秒前
Skyllne完成签到,获得积分10
33秒前
罗_应助wen采纳,获得10
33秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461273
求助须知:如何正确求助?哪些是违规求助? 3054977
关于积分的说明 9045885
捐赠科研通 2744911
什么是DOI,文献DOI怎么找? 1505727
科研通“疑难数据库(出版商)”最低求助积分说明 695812
邀请新用户注册赠送积分活动 695233