亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Recent Progress in Learning Algorithms Applied in Energy Management of Hybrid Vehicles: A Comprehensive Review

计算机科学 人工智能 算法 强化学习 机器学习
作者
Dezhou Xu,Chunhua Zheng,Yunduan Cui,Shengxiang Fu,Nam Wook Kim,Suk Won
出处
期刊:International Journal of Precision Engineering and Manufacturing-Green Technology [Springer Nature]
卷期号:10 (1): 245-267 被引量:5
标识
DOI:10.1007/s40684-022-00476-2
摘要

Hybrid vehicles (HVs) that equip at least two different energy sources have been proven to be one of effective and promising solutions to mitigate the issues of energy crisis and environmental pollution. For HVs, one of the core supervisory control problems is the power distribution among multiple power sources, and for this problem, energy management strategies (EMSs) have been studied to save energy and extend the service life of HVs. In recent years, with the rapid development of artificial intelligence and computer technologies, learning algorithms have been gradually applied to the EMS field and shortly become a novel research hotspot. Although there are some brief reviews on the learning-based (LB) EMSs for HVs in recent years, a state-of-the-art and thorough review related to the applications of learning algorithms in HV EMSs still lacks. In this paper, learning algorithms applied in HV EMSs are categorized and reviewed in terms of the reinforcement learning algorithms and deep reinforcement learning algorithms. Apart from presenting the recent progress of learning algorithms applied in HV EMSs, advantages and disadvantages of different learning algorithms and LB EMSs are also discussed. Finally, a brief outlook related to the further applications of learning algorithms in HV EMSs, such as the integration towards autonomous driving and intelligent transportation system, is presented.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
灵巧延恶发布了新的文献求助10
8秒前
10秒前
dawnfrf完成签到,获得积分10
12秒前
20秒前
研友_VZG7GZ应助谢谢采纳,获得10
22秒前
22秒前
惠若烟发布了新的文献求助10
25秒前
34秒前
灵巧延恶发布了新的文献求助10
35秒前
大模型应助读书的时候采纳,获得10
39秒前
44秒前
46秒前
50秒前
要减肥的婷冉完成签到,获得积分10
52秒前
57秒前
完美世界应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
YYL完成签到 ,获得积分10
1分钟前
1分钟前
热情依白应助读书的时候采纳,获得10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
2分钟前
2分钟前
wangping发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
Michael完成签到 ,获得积分10
2分钟前
谢谢发布了新的文献求助10
2分钟前
3分钟前
谢谢完成签到,获得积分10
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5688081
求助须知:如何正确求助?哪些是违规求助? 5063451
关于积分的说明 15193663
捐赠科研通 4846460
什么是DOI,文献DOI怎么找? 2598848
邀请新用户注册赠送积分活动 1550956
关于科研通互助平台的介绍 1509546