Recent Progress in Learning Algorithms Applied in Energy Management of Hybrid Vehicles: A Comprehensive Review

计算机科学 人工智能 算法 强化学习 机器学习
作者
Dezhou Xu,Chunhua Zheng,Yunduan Cui,Shengxiang Fu,Nam Wook Kim,Suk Won
出处
期刊:International Journal of Precision Engineering and Manufacturing-Green Technology [Springer Nature]
卷期号:10 (1): 245-267 被引量:5
标识
DOI:10.1007/s40684-022-00476-2
摘要

Hybrid vehicles (HVs) that equip at least two different energy sources have been proven to be one of effective and promising solutions to mitigate the issues of energy crisis and environmental pollution. For HVs, one of the core supervisory control problems is the power distribution among multiple power sources, and for this problem, energy management strategies (EMSs) have been studied to save energy and extend the service life of HVs. In recent years, with the rapid development of artificial intelligence and computer technologies, learning algorithms have been gradually applied to the EMS field and shortly become a novel research hotspot. Although there are some brief reviews on the learning-based (LB) EMSs for HVs in recent years, a state-of-the-art and thorough review related to the applications of learning algorithms in HV EMSs still lacks. In this paper, learning algorithms applied in HV EMSs are categorized and reviewed in terms of the reinforcement learning algorithms and deep reinforcement learning algorithms. Apart from presenting the recent progress of learning algorithms applied in HV EMSs, advantages and disadvantages of different learning algorithms and LB EMSs are also discussed. Finally, a brief outlook related to the further applications of learning algorithms in HV EMSs, such as the integration towards autonomous driving and intelligent transportation system, is presented.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
途中的人完成签到 ,获得积分10
刚刚
刚刚
刚刚
BowieHuang应助愉快的半双采纳,获得10
1秒前
蓝天应助愉快的半双采纳,获得10
1秒前
llf完成签到,获得积分10
1秒前
Allure发布了新的文献求助10
1秒前
1秒前
wyyt完成签到,获得积分10
2秒前
研友_VZG7GZ应助无声瀑布采纳,获得10
2秒前
2秒前
胖狗完成签到 ,获得积分10
2秒前
3秒前
Nell发布了新的文献求助10
3秒前
ding应助蠢蠢的死法采纳,获得10
3秒前
qqs完成签到,获得积分0
3秒前
4秒前
4秒前
BowieHuang应助热情初瑶采纳,获得10
5秒前
Hello应助隐形元绿采纳,获得10
5秒前
pio完成签到 ,获得积分10
5秒前
科研通AI2S应助ark861023采纳,获得10
5秒前
6秒前
霸气千易发布了新的文献求助10
6秒前
6秒前
浮浮世世发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
正反馈完成签到,获得积分10
7秒前
舒心灵萱发布了新的文献求助10
7秒前
善学以致用应助0610采纳,获得10
8秒前
8秒前
8秒前
dongzhiliang完成签到,获得积分10
9秒前
跨材料发布了新的社区帖子
9秒前
英俊的铭应助仔仔采纳,获得10
10秒前
小明发布了新的文献求助10
10秒前
11秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5582755
求助须知:如何正确求助?哪些是违规求助? 4666874
关于积分的说明 14764127
捐赠科研通 4608899
什么是DOI,文献DOI怎么找? 2528885
邀请新用户注册赠送积分活动 1498196
关于科研通互助平台的介绍 1466887