Attention-based LSTM (AttLSTM) neural network for Seismic Response Modeling of Bridges

桥(图论) 人工神经网络 计算机科学 可靠性(半导体) 钥匙(锁) 循环神经网络 人工智能 深度学习 机器学习 结构健康监测 机制(生物学) 梁桥 工程类 大梁 结构工程 认识论 功率(物理) 哲学 内科学 物理 医学 量子力学 计算机安全
作者
Yuchen Liao,Rong Lin,Ruiyang Zhang,Gang Wu
出处
期刊:Computers & Structures [Elsevier BV]
卷期号:275: 106915-106915 被引量:59
标识
DOI:10.1016/j.compstruc.2022.106915
摘要

Accurate prediction of bridge responses plays an essential role in health monitoring and safety assessment of bridges subjected to dynamic loads such as earthquakes. To this end, this paper leverages the recent advances in deep learning and proposes an innovative attention-based recurrent neural network for metamodeling of bridge structures under seismic hazards. The key concept is to establish an attention-based long short-term memory neural network (AttLSTM) to learn the dynamics from limited training data and make predictions of bridge responses against unseen earthquakes. In particular, an attention mechanism is proposed to enhance the selection of more informative components among sequential data for better learning from limited data. The performance of the proposed AttLSTM neural network was validated through both numerical and real-world data of a girder bridge and a cable-stayed bridge to systematically evaluate the prediction performance of the proposed method. In addition, the classical LSTM neural network was selected as the baseline model to show the favorable performance of the proposed attention mechanism. Results indicate that the proposed method with attention mechanism outperforms the compared state-of-the-art LSTM in terms of both accuracy and reliability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大方忆秋完成签到 ,获得积分10
1秒前
1秒前
邱寒烟aa完成签到 ,获得积分0
1秒前
2秒前
芝芝为荔枝完成签到,获得积分20
2秒前
完美世界应助sunzhuxi采纳,获得10
4秒前
6秒前
神勇的晟睿完成签到 ,获得积分10
7秒前
共享精神应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
fancynancy应助科研通管家采纳,获得30
8秒前
gzf213完成签到,获得积分10
9秒前
10秒前
鑫渊完成签到,获得积分10
12秒前
甜甜千兰完成签到 ,获得积分10
13秒前
djiwisksk66应助轻舞飞扬采纳,获得10
14秒前
15秒前
15秒前
15秒前
yifei完成签到,获得积分10
16秒前
洛阳官人完成签到,获得积分10
18秒前
19秒前
hcmsaobang2001完成签到,获得积分10
21秒前
sunzhuxi发布了新的文献求助10
22秒前
哭泣的俊驰完成签到,获得积分10
22秒前
一与余完成签到,获得积分10
22秒前
吉吉完成签到,获得积分10
23秒前
manman完成签到,获得积分10
23秒前
23秒前
23秒前
26秒前
MchemG应助可耐的思枫采纳,获得20
27秒前
林子青发布了新的文献求助10
28秒前
Rigel发布了新的文献求助10
29秒前
29秒前
华仔应助乐观的小熊猫采纳,获得10
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950931
求助须知:如何正确求助?哪些是违规求助? 3496322
关于积分的说明 11081419
捐赠科研通 3226783
什么是DOI,文献DOI怎么找? 1783983
邀请新用户注册赠送积分活动 868029
科研通“疑难数据库(出版商)”最低求助积分说明 800993