Atomistic neural network representations for chemical dynamics simulations of molecular, condensed phase, and interfacial systems: Efficiency, representability, and generalization

一般化 统计物理学 可扩展性 物理系统 人工神经网络 统计力学 标量(数学) 分子动力学 机器学习 理论计算机科学 计算机科学 物理 数学 人工智能 量子力学 数学分析 几何学 数据库
作者
Yaolong Zhang,Qidong Lin,Bin Jiang
出处
期刊:Wiley Interdisciplinary Reviews: Computational Molecular Science [Wiley]
卷期号:13 (3) 被引量:21
标识
DOI:10.1002/wcms.1645
摘要

Abstract Machine learning techniques have been widely applied in many fields of chemistry, physics, biology, and materials science. One of the most fruitful applications is machine learning of the complicated multidimensional function of potential energy or related electronic properties from discrete quantum chemical data. In particular, substantial efforts have been dedicated to developing various atomistic neural network (AtNN) representations, which refer to a family of methods expressing the targeted physical quantity as a sum of atomic components represented by atomic NNs. This class of approaches not only fully preserves the physical symmetry of the system but also scales linearly with respect to the size of a system, enabling accurate and efficient chemical dynamics and spectroscopic simulations in complicated systems and even a number of variably sized systems across the phases. In this review, we discuss different strategies in developing highly efficient and representable AtNN potentials, and in generalizing these scalar AtNN models to learn vectorial and tensorial quantities with the correct rotational equivariance. We also review active learning algorithms to generate practical AtNN models and present selected examples of AtNN applications in gas‐surface systems to demonstrate their capabilities of accurately representing both molecular systems and condensed phase systems. We conclude this review by pointing out remaining challenges for the further development of more reliable, transferable, and scalable AtNN representations in more application scenarios. This article is categorized under: Data Science > Artificial Intelligence/Machine Learning Molecular and Statistical Mechanics > Molecular Interactions
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yif发布了新的文献求助10
刚刚
眼睛大的亦玉完成签到,获得积分10
刚刚
LYSC完成签到,获得积分10
刚刚
三颜寻雪完成签到 ,获得积分10
1秒前
2秒前
4秒前
pp发布了新的文献求助10
4秒前
relexer发布了新的文献求助10
4秒前
彭shuai完成签到,获得积分10
4秒前
OrangeWang发布了新的文献求助10
5秒前
6秒前
LYSC发布了新的文献求助20
7秒前
wujiwuhui发布了新的文献求助10
7秒前
8秒前
一一应助煎饼狗子采纳,获得10
8秒前
9秒前
xiaoxiao发布了新的文献求助30
10秒前
10秒前
11秒前
hi完成签到,获得积分20
11秒前
PlanA发布了新的文献求助10
12秒前
moonzz发布了新的文献求助10
12秒前
kk发布了新的文献求助10
13秒前
14秒前
red发布了新的文献求助10
14秒前
良辰应助心里的种子采纳,获得10
16秒前
宋文娟发布了新的文献求助10
16秒前
哇哈哈完成签到,获得积分10
18秒前
余一台发布了新的文献求助10
18秒前
hi发布了新的文献求助10
18秒前
隐形曼青应助DLDL采纳,获得10
19秒前
19秒前
moonzz完成签到,获得积分10
20秒前
yif完成签到,获得积分20
21秒前
怕黑的音响完成签到 ,获得积分10
22秒前
科研通AI2S应助星星采纳,获得10
22秒前
23秒前
王京文完成签到 ,获得积分20
23秒前
DLY发布了新的文献求助10
24秒前
Shu发布了新的文献求助10
24秒前
高分求助中
Earth System Geophysics 1000
Semiconductor Process Reliability in Practice 800
Co-opetition under Endogenous Bargaining Power 666
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3210528
求助须知:如何正确求助?哪些是违规求助? 2859785
关于积分的说明 8121041
捐赠科研通 2525276
什么是DOI,文献DOI怎么找? 1359214
科研通“疑难数据库(出版商)”最低求助积分说明 642956
邀请新用户注册赠送积分活动 614756