Atomistic neural network representations for chemical dynamics simulations of molecular, condensed phase, and interfacial systems: Efficiency, representability, and generalization

一般化 统计物理学 可扩展性 物理系统 人工神经网络 统计力学 标量(数学) 分子动力学 机器学习 理论计算机科学 计算机科学 物理 数学 人工智能 量子力学 数学分析 几何学 数据库
作者
Yaolong Zhang,Qidong Lin,Bin Jiang
出处
期刊:Wiley Interdisciplinary Reviews: Computational Molecular Science [Wiley]
卷期号:13 (3) 被引量:21
标识
DOI:10.1002/wcms.1645
摘要

Abstract Machine learning techniques have been widely applied in many fields of chemistry, physics, biology, and materials science. One of the most fruitful applications is machine learning of the complicated multidimensional function of potential energy or related electronic properties from discrete quantum chemical data. In particular, substantial efforts have been dedicated to developing various atomistic neural network (AtNN) representations, which refer to a family of methods expressing the targeted physical quantity as a sum of atomic components represented by atomic NNs. This class of approaches not only fully preserves the physical symmetry of the system but also scales linearly with respect to the size of a system, enabling accurate and efficient chemical dynamics and spectroscopic simulations in complicated systems and even a number of variably sized systems across the phases. In this review, we discuss different strategies in developing highly efficient and representable AtNN potentials, and in generalizing these scalar AtNN models to learn vectorial and tensorial quantities with the correct rotational equivariance. We also review active learning algorithms to generate practical AtNN models and present selected examples of AtNN applications in gas‐surface systems to demonstrate their capabilities of accurately representing both molecular systems and condensed phase systems. We conclude this review by pointing out remaining challenges for the further development of more reliable, transferable, and scalable AtNN representations in more application scenarios. This article is categorized under: Data Science > Artificial Intelligence/Machine Learning Molecular and Statistical Mechanics > Molecular Interactions

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
材小料发布了新的文献求助10
3秒前
ChenXY完成签到,获得积分10
3秒前
halo发布了新的文献求助10
4秒前
lst完成签到,获得积分10
5秒前
科研通AI2S应助kangk采纳,获得10
6秒前
浮游应助空明流毓采纳,获得10
8秒前
9秒前
YUESIYA发布了新的文献求助30
10秒前
寒冷的奇异果完成签到,获得积分10
10秒前
spc68应助早安采纳,获得10
14秒前
复成完成签到 ,获得积分10
16秒前
光亮妙之完成签到,获得积分10
16秒前
dd发布了新的文献求助30
16秒前
整齐半青完成签到 ,获得积分10
16秒前
你好完成签到,获得积分10
17秒前
chenanqi完成签到,获得积分10
17秒前
18秒前
yfn完成签到,获得积分10
22秒前
23秒前
27秒前
halo完成签到,获得积分10
28秒前
抑郁小鼠解剖家完成签到,获得积分10
28秒前
忧心的不言完成签到,获得积分10
30秒前
5_羟色胺完成签到,获得积分10
32秒前
12135发布了新的文献求助30
32秒前
wanci应助科研通管家采纳,获得10
35秒前
小蘑菇应助科研通管家采纳,获得10
35秒前
科研通AI2S应助科研通管家采纳,获得10
35秒前
科研通AI6应助科研通管家采纳,获得80
35秒前
华仔应助科研通管家采纳,获得10
35秒前
科研通AI2S应助科研通管家采纳,获得30
35秒前
爱喝酸奶完成签到 ,获得积分10
35秒前
njgi发布了新的文献求助10
36秒前
材小料完成签到,获得积分10
37秒前
FashionBoy应助重要谷雪采纳,获得10
38秒前
爱偷懒的猪完成签到,获得积分10
39秒前
怂宝儿完成签到,获得积分10
40秒前
41秒前
43秒前
水澈天澜发布了新的文献求助20
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563713
求助须知:如何正确求助?哪些是违规求助? 4648650
关于积分的说明 14685821
捐赠科研通 4590597
什么是DOI,文献DOI怎么找? 2518657
邀请新用户注册赠送积分活动 1491243
关于科研通互助平台的介绍 1462521