Atomistic neural network representations for chemical dynamics simulations of molecular, condensed phase, and interfacial systems: Efficiency, representability, and generalization

一般化 统计物理学 可扩展性 物理系统 人工神经网络 统计力学 标量(数学) 分子动力学 机器学习 理论计算机科学 计算机科学 物理 数学 人工智能 量子力学 数学分析 几何学 数据库
作者
Yaolong Zhang,Qidong Lin,Bin Jiang
出处
期刊:Wiley Interdisciplinary Reviews: Computational Molecular Science [Wiley]
卷期号:13 (3) 被引量:21
标识
DOI:10.1002/wcms.1645
摘要

Abstract Machine learning techniques have been widely applied in many fields of chemistry, physics, biology, and materials science. One of the most fruitful applications is machine learning of the complicated multidimensional function of potential energy or related electronic properties from discrete quantum chemical data. In particular, substantial efforts have been dedicated to developing various atomistic neural network (AtNN) representations, which refer to a family of methods expressing the targeted physical quantity as a sum of atomic components represented by atomic NNs. This class of approaches not only fully preserves the physical symmetry of the system but also scales linearly with respect to the size of a system, enabling accurate and efficient chemical dynamics and spectroscopic simulations in complicated systems and even a number of variably sized systems across the phases. In this review, we discuss different strategies in developing highly efficient and representable AtNN potentials, and in generalizing these scalar AtNN models to learn vectorial and tensorial quantities with the correct rotational equivariance. We also review active learning algorithms to generate practical AtNN models and present selected examples of AtNN applications in gas‐surface systems to demonstrate their capabilities of accurately representing both molecular systems and condensed phase systems. We conclude this review by pointing out remaining challenges for the further development of more reliable, transferable, and scalable AtNN representations in more application scenarios. This article is categorized under: Data Science > Artificial Intelligence/Machine Learning Molecular and Statistical Mechanics > Molecular Interactions
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lipltsit发布了新的文献求助10
1秒前
1秒前
sasa完成签到 ,获得积分10
1秒前
HanyuYuzuru发布了新的文献求助10
1秒前
惔惔惔发布了新的文献求助10
2秒前
Jason完成签到,获得积分10
2秒前
光电很亮发布了新的文献求助10
2秒前
机智的初柳应助三七采纳,获得20
3秒前
FCL发布了新的文献求助10
3秒前
YW完成签到,获得积分10
4秒前
4秒前
SophiaMX发布了新的文献求助30
4秒前
4秒前
陈平安发布了新的文献求助10
5秒前
conanyangqun完成签到,获得积分10
5秒前
5秒前
hhhh发布了新的文献求助10
5秒前
6秒前
寒冷的飞烟完成签到,获得积分10
6秒前
3242晶发布了新的文献求助10
6秒前
善学以致用应助HanyuYuzuru采纳,获得10
6秒前
QW111发布了新的文献求助10
7秒前
8秒前
朴实的天佑完成签到,获得积分10
8秒前
xuanzeng完成签到,获得积分10
8秒前
李冬卿完成签到,获得积分10
8秒前
DHY发布了新的文献求助10
9秒前
9秒前
UNIQ85完成签到,获得积分10
10秒前
10秒前
10秒前
LLY发布了新的文献求助10
10秒前
不安青牛应助陈平安采纳,获得10
10秒前
无情招牌发布了新的文献求助10
10秒前
10秒前
永恒完成签到,获得积分10
10秒前
SciGPT应助Amelie采纳,获得30
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4560391
求助须知:如何正确求助?哪些是违规求助? 3986563
关于积分的说明 12343059
捐赠科研通 3657249
什么是DOI,文献DOI怎么找? 2014798
邀请新用户注册赠送积分活动 1049621
科研通“疑难数据库(出版商)”最低求助积分说明 937803