Atomistic neural network representations for chemical dynamics simulations of molecular, condensed phase, and interfacial systems: Efficiency, representability, and generalization

一般化 统计物理学 可扩展性 物理系统 人工神经网络 统计力学 标量(数学) 分子动力学 机器学习 理论计算机科学 计算机科学 物理 数学 人工智能 量子力学 数学分析 几何学 数据库
作者
Yaolong Zhang,Qidong Lin,Bin Jiang
出处
期刊:Wiley Interdisciplinary Reviews: Computational Molecular Science [Wiley]
卷期号:13 (3) 被引量:21
标识
DOI:10.1002/wcms.1645
摘要

Abstract Machine learning techniques have been widely applied in many fields of chemistry, physics, biology, and materials science. One of the most fruitful applications is machine learning of the complicated multidimensional function of potential energy or related electronic properties from discrete quantum chemical data. In particular, substantial efforts have been dedicated to developing various atomistic neural network (AtNN) representations, which refer to a family of methods expressing the targeted physical quantity as a sum of atomic components represented by atomic NNs. This class of approaches not only fully preserves the physical symmetry of the system but also scales linearly with respect to the size of a system, enabling accurate and efficient chemical dynamics and spectroscopic simulations in complicated systems and even a number of variably sized systems across the phases. In this review, we discuss different strategies in developing highly efficient and representable AtNN potentials, and in generalizing these scalar AtNN models to learn vectorial and tensorial quantities with the correct rotational equivariance. We also review active learning algorithms to generate practical AtNN models and present selected examples of AtNN applications in gas‐surface systems to demonstrate their capabilities of accurately representing both molecular systems and condensed phase systems. We conclude this review by pointing out remaining challenges for the further development of more reliable, transferable, and scalable AtNN representations in more application scenarios. This article is categorized under: Data Science > Artificial Intelligence/Machine Learning Molecular and Statistical Mechanics > Molecular Interactions
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lh发布了新的文献求助10
刚刚
1秒前
高伟杰完成签到,获得积分10
2秒前
2秒前
4秒前
上官若男应助这样很OK采纳,获得10
5秒前
Ray羽曦~发布了新的文献求助10
5秒前
情怀应助纪复天采纳,获得10
5秒前
7秒前
7秒前
安详的紫山完成签到,获得积分20
7秒前
赘婿应助lh采纳,获得10
7秒前
8秒前
领导范儿应助文静的翠彤采纳,获得10
8秒前
研友_rLmNXn发布了新的文献求助10
9秒前
katherine完成签到 ,获得积分10
9秒前
10秒前
NexusExplorer应助Xian采纳,获得10
10秒前
乂贰ZERO叁发布了新的文献求助10
11秒前
11秒前
12秒前
灰木发布了新的文献求助10
12秒前
ED应助研友_rLmNXn采纳,获得10
12秒前
星辰大海应助研友_rLmNXn采纳,获得10
12秒前
苏苏发布了新的文献求助10
12秒前
12秒前
JamesPei应助sun采纳,获得10
12秒前
追风少年发布了新的文献求助10
13秒前
aldehyde应助科研通管家采纳,获得10
13秒前
上官若男应助科研通管家采纳,获得10
13秒前
田様应助科研通管家采纳,获得10
13秒前
wdy111应助科研通管家采纳,获得10
14秒前
ding应助科研通管家采纳,获得10
14秒前
14秒前
JamesPei应助科研通管家采纳,获得10
14秒前
柯一一应助科研通管家采纳,获得10
14秒前
14秒前
aldehyde应助科研通管家采纳,获得10
14秒前
充电宝应助科研通管家采纳,获得10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989645
求助须知:如何正确求助?哪些是违规求助? 3531805
关于积分的说明 11254983
捐赠科研通 3270372
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176