P-ResUnet: Segmentation of brain tissue with Purified Residual Unet

残余物 计算机科学 人工智能 分割 块(置换群论) 计算机视觉 噪音(视频) 模式识别(心理学) 图像分割 卷积(计算机科学) 棱锥(几何) 编码器 图像(数学) 人工神经网络 算法 数学 操作系统 几何学
作者
Ke Niu,Zhongmin Guo,Xueping Peng,Su Pei
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:151: 106294-106294 被引量:18
标识
DOI:10.1016/j.compbiomed.2022.106294
摘要

Brain tissue of Magnetic Resonance Imaging is precisely segmented and quantified, which aids in the diagnosis of neurological diseases such as epilepsy, Alzheimer's, and multiple sclerosis. Recently, UNet-like architectures are widely used for medical image segmentation, which achieved promising performance by using the skip connection to fuse the low-level and high-level information. However, In the process of integrating the low-level and high-level information, the non-object information (noise) will be added, which reduces the accuracy of medical image segmentation. Likewise, the same problem also exists in the residual unit. Since the output and input of the residual unit are fused, the non-object information (noise) of the input of the residual unit will be in the integration. To address this challenging problem, in this paper we propose a Purified Residual U-net for the segmentation of brain tissue. This model encodes the image to obtain deep semantic information and purifies the information of low-level features and the residual unit from the image, and acquires the result through a decoder at last. We use the Dilated Pyramid Separate Block (DPSB) as the first block to purify the features for each layer in the encoder without the first layer, which expands the receptive field of the convolution kernel with only a few parameters added. In the first layer, we have explored the best performance achieved with DPB. We find the most non-object information (noise) in the initial image, so it is good for the accuracy to exchange the information to the max degree. We have conducted experiments with the widely used IBSR-18 dataset composed of T-1 weighted MRI volumes from 18 subjects. The results show that compared with some of the cutting-edge methods, our method enhances segmentation performance with the mean dice score reaching 91.093% and the mean Hausdorff distance decreasing to 3.2606.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助141592采纳,获得10
刚刚
sjr完成签到,获得积分10
刚刚
刚刚
SciGPT应助秋吉儿采纳,获得10
刚刚
陪小凯许个愿完成签到,获得积分10
刚刚
刚刚
晚灯君完成签到 ,获得积分0
1秒前
Lee发布了新的文献求助10
1秒前
1秒前
2秒前
呋喃发布了新的文献求助10
2秒前
2秒前
852应助根深者叶茂采纳,获得10
2秒前
Leixn完成签到,获得积分10
3秒前
3秒前
4秒前
sjr发布了新的文献求助10
4秒前
4秒前
Akim应助www采纳,获得10
4秒前
4秒前
Ramanujan完成签到,获得积分10
4秒前
李爱国应助105度余温采纳,获得10
4秒前
5秒前
白马非马完成签到,获得积分10
5秒前
怕孤独的问芙完成签到 ,获得积分10
5秒前
韩大王发布了新的文献求助10
5秒前
壮观梦之完成签到,获得积分10
6秒前
6秒前
丘比特应助阮科采纳,获得10
6秒前
妖怪大大发布了新的文献求助10
6秒前
风华发布了新的文献求助10
6秒前
二二春发布了新的文献求助10
7秒前
搜集达人应助小小鱼采纳,获得10
7秒前
123完成签到,获得积分10
7秒前
7秒前
华仔应助xiaoexiaoe采纳,获得10
7秒前
7秒前
7秒前
zzx发布了新的文献求助10
7秒前
风笛完成签到 ,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645776
求助须知:如何正确求助?哪些是违规求助? 4769743
关于积分的说明 15032036
捐赠科研通 4804514
什么是DOI,文献DOI怎么找? 2569056
邀请新用户注册赠送积分活动 1526123
关于科研通互助平台的介绍 1485700