已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

P-ResUnet: Segmentation of brain tissue with Purified Residual Unet

残余物 计算机科学 人工智能 分割 块(置换群论) 计算机视觉 噪音(视频) 模式识别(心理学) 图像分割 卷积(计算机科学) 棱锥(几何) 编码器 图像(数学) 人工神经网络 算法 数学 操作系统 几何学
作者
Ke Niu,Zhongmin Guo,Xueping Peng,Su Pei
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:151: 106294-106294 被引量:18
标识
DOI:10.1016/j.compbiomed.2022.106294
摘要

Brain tissue of Magnetic Resonance Imaging is precisely segmented and quantified, which aids in the diagnosis of neurological diseases such as epilepsy, Alzheimer's, and multiple sclerosis. Recently, UNet-like architectures are widely used for medical image segmentation, which achieved promising performance by using the skip connection to fuse the low-level and high-level information. However, In the process of integrating the low-level and high-level information, the non-object information (noise) will be added, which reduces the accuracy of medical image segmentation. Likewise, the same problem also exists in the residual unit. Since the output and input of the residual unit are fused, the non-object information (noise) of the input of the residual unit will be in the integration. To address this challenging problem, in this paper we propose a Purified Residual U-net for the segmentation of brain tissue. This model encodes the image to obtain deep semantic information and purifies the information of low-level features and the residual unit from the image, and acquires the result through a decoder at last. We use the Dilated Pyramid Separate Block (DPSB) as the first block to purify the features for each layer in the encoder without the first layer, which expands the receptive field of the convolution kernel with only a few parameters added. In the first layer, we have explored the best performance achieved with DPB. We find the most non-object information (noise) in the initial image, so it is good for the accuracy to exchange the information to the max degree. We have conducted experiments with the widely used IBSR-18 dataset composed of T-1 weighted MRI volumes from 18 subjects. The results show that compared with some of the cutting-edge methods, our method enhances segmentation performance with the mean dice score reaching 91.093% and the mean Hausdorff distance decreasing to 3.2606.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
直率芮完成签到 ,获得积分10
1秒前
隐形曼青应助有机分子笼采纳,获得10
5秒前
卡琳发布了新的文献求助10
7秒前
好好好完成签到 ,获得积分10
7秒前
KIKI发布了新的文献求助10
8秒前
LinLuoHeng完成签到,获得积分10
8秒前
吴嘉俊完成签到 ,获得积分10
9秒前
毛毛弟完成签到 ,获得积分10
15秒前
15秒前
Alex完成签到,获得积分0
16秒前
Carolchen发布了新的文献求助10
21秒前
22秒前
闹心完成签到 ,获得积分10
23秒前
23秒前
YBR完成签到 ,获得积分10
25秒前
Sven_M完成签到,获得积分10
25秒前
董思雨发布了新的文献求助10
27秒前
张雯思发布了新的文献求助10
28秒前
我是125完成签到,获得积分10
30秒前
大模型应助Carolchen采纳,获得10
31秒前
yihanghh完成签到 ,获得积分10
34秒前
司忆完成签到 ,获得积分10
34秒前
Bowman完成签到,获得积分10
35秒前
36秒前
李爱国应助sally采纳,获得10
36秒前
Tsin778完成签到 ,获得积分10
38秒前
leolee发布了新的文献求助10
40秒前
缓慢逍遥完成签到 ,获得积分10
41秒前
44秒前
优雅愚志完成签到,获得积分10
46秒前
ccc完成签到 ,获得积分10
47秒前
李健的小迷弟应助张雯思采纳,获得10
47秒前
ding应助张雯思采纳,获得10
47秒前
李健的小迷弟应助张雯思采纳,获得10
47秒前
47秒前
SciGPT应助张雯思采纳,获得10
47秒前
陈虹林关注了科研通微信公众号
47秒前
上官若男应助张雯思采纳,获得10
47秒前
Owen应助张雯思采纳,获得10
47秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994701
求助须知:如何正确求助?哪些是违规求助? 3534936
关于积分的说明 11266877
捐赠科研通 3274773
什么是DOI,文献DOI怎么找? 1806467
邀请新用户注册赠送积分活动 883316
科研通“疑难数据库(出版商)”最低求助积分说明 809749