P-ResUnet: Segmentation of brain tissue with Purified Residual Unet

残余物 计算机科学 人工智能 分割 块(置换群论) 计算机视觉 噪音(视频) 模式识别(心理学) 图像分割 卷积(计算机科学) 棱锥(几何) 编码器 图像(数学) 人工神经网络 算法 数学 操作系统 几何学
作者
Ke Niu,Zhongmin Guo,Xueping Peng,Su Pei
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:151: 106294-106294 被引量:18
标识
DOI:10.1016/j.compbiomed.2022.106294
摘要

Brain tissue of Magnetic Resonance Imaging is precisely segmented and quantified, which aids in the diagnosis of neurological diseases such as epilepsy, Alzheimer's, and multiple sclerosis. Recently, UNet-like architectures are widely used for medical image segmentation, which achieved promising performance by using the skip connection to fuse the low-level and high-level information. However, In the process of integrating the low-level and high-level information, the non-object information (noise) will be added, which reduces the accuracy of medical image segmentation. Likewise, the same problem also exists in the residual unit. Since the output and input of the residual unit are fused, the non-object information (noise) of the input of the residual unit will be in the integration. To address this challenging problem, in this paper we propose a Purified Residual U-net for the segmentation of brain tissue. This model encodes the image to obtain deep semantic information and purifies the information of low-level features and the residual unit from the image, and acquires the result through a decoder at last. We use the Dilated Pyramid Separate Block (DPSB) as the first block to purify the features for each layer in the encoder without the first layer, which expands the receptive field of the convolution kernel with only a few parameters added. In the first layer, we have explored the best performance achieved with DPB. We find the most non-object information (noise) in the initial image, so it is good for the accuracy to exchange the information to the max degree. We have conducted experiments with the widely used IBSR-18 dataset composed of T-1 weighted MRI volumes from 18 subjects. The results show that compared with some of the cutting-edge methods, our method enhances segmentation performance with the mean dice score reaching 91.093% and the mean Hausdorff distance decreasing to 3.2606.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拥挤而独行完成签到,获得积分10
1秒前
科研通AI2S应助CC采纳,获得10
1秒前
专注刺猬完成签到,获得积分10
2秒前
2秒前
研友_842M4n发布了新的文献求助10
2秒前
酸奶七完成签到,获得积分20
2秒前
AAA电材哥完成签到,获得积分10
3秒前
听说外面下雨了完成签到,获得积分10
3秒前
xyzlancet发布了新的文献求助10
3秒前
sb发布了新的文献求助10
4秒前
名字没想好给名字没想好的求助进行了留言
4秒前
yangxin614发布了新的文献求助10
5秒前
6秒前
minkyu发布了新的文献求助10
6秒前
AAA电材哥发布了新的文献求助10
6秒前
yaoyh_gc发布了新的文献求助10
7秒前
酷波er应助南海牧鲸人采纳,获得10
8秒前
所所应助王彤彤采纳,获得10
9秒前
9秒前
木木完成签到 ,获得积分10
10秒前
感动樱发布了新的文献求助10
11秒前
xbf完成签到,获得积分10
11秒前
CC关闭了CC文献求助
12秒前
13秒前
14秒前
augety完成签到 ,获得积分10
14秒前
minkyu完成签到,获得积分10
15秒前
sel发布了新的文献求助20
15秒前
逆鳞发布了新的文献求助30
16秒前
柟枫关注了科研通微信公众号
16秒前
天上的云在飘应助小杨采纳,获得50
17秒前
重要手机完成签到 ,获得积分10
18秒前
19秒前
Allonz应助zzzzzjzjjjj采纳,获得10
20秒前
慕青应助FBQZDJG2122采纳,获得10
20秒前
英姑应助79采纳,获得10
20秒前
鉨汏闫发布了新的文献求助10
20秒前
20秒前
lhcshuang完成签到,获得积分20
20秒前
老鱼发布了新的文献求助10
20秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180559
求助须知:如何正确求助?哪些是违规求助? 2830850
关于积分的说明 7981528
捐赠科研通 2492562
什么是DOI,文献DOI怎么找? 1329653
科研通“疑难数据库(出版商)”最低求助积分说明 635785
版权声明 602954