参数化(大气建模)
灵敏度(控制系统)
参数空间
多项式混沌
可识别性
估计理论
电池(电)
实验设计
计算机科学
钥匙(锁)
数学优化
系统标识
电压
鉴定(生物学)
多项式的
控制理论(社会学)
算法
数学
工程类
机器学习
电子工程
数据建模
人工智能
功率(物理)
蒙特卡罗方法
数学分析
控制(管理)
物理
电气工程
统计
生物
数据库
辐射传输
量子力学
植物
计算机安全
作者
Moritz Streb,Mathilda Ohrelius,Matilda Klett,Göran Lindbergh
标识
DOI:10.1016/j.est.2022.105948
摘要
Li-ion batteries are a key enabling technology for electric vehicles and determining their properties precisely is an essential step in improving utilization and performance. Batteries are highly complex electrochemical systems, with processes occurring in parallel on many time- and length-scales. Models describing these mechanisms require extensive parametrization efforts, conventionally using a combination of ex-situ characterization and systems identification. We present a methodology that algorithmically designs current input signals to optimize parameter identifiability from voltage measurements. Our approach uses global sensitivity analysis based on the generalized polynomial chaos expansion to map the entire parameter uncertainty space, relying on minimal prior knowledge of the system. Parameter specific optimal experiments are designed to maximize sensitivity and simultaneously minimize interactions and unwanted contributions by other parameters. Experiments are defined using only three design variables making our approach computationally efficient. The methodology is demonstrated using the Doyle-Fuller-Newman battery model for eight parameters of a 2.6 Ah 18,650 cell. Validation confirms that the proposed approach significantly improves model performance and parameter accuracy, while lowering experimental burden.
科研通智能强力驱动
Strongly Powered by AbleSci AI