Intelligent rolling bearing imbalanced fault diagnosis based on Mel-Frequency Cepstrum Coefficient and Convolutional Neural Networks

规范化(社会学) Mel倒谱 倒谱 模式识别(心理学) 卷积神经网络 计算机科学 特征提取 人工智能 特征(语言学) 断层(地质) 语音识别 哲学 社会学 地质学 语言学 地震学 人类学
作者
Peng Yao,Jinxi Wang,Faye Zhang,Wei Li,Shanshan Lv,Mingshun Jiang,Lei Jia
出处
期刊:Measurement [Elsevier]
卷期号:205: 112143-112143 被引量:25
标识
DOI:10.1016/j.measurement.2022.112143
摘要

• Mel-Frequency Cepstrum Coefficient (MFCC) is adopted to better extract low and medium frequency feature, and use cepstrum lifting technique for feature enhancement. • To improve the domain adaptability of the MECNN proposed, use Mode Normalization to reduce the internal covariant shift caused by data distribution discrepancy, and Effective Channel Attention is adopted to enhance the feature to improve the anti-interference ability. • To evaluate the performance of the MFCC-MECNN method proposed, set 2 types of data distribution shift experiments (data imbalance and operating condition change). To improve the bearing fault diagnosis performance under the condition of data distribution shift, an intelligent diagnosis method based on MFCC (Mel-Frequency Cepstrum Coefficient) and MECNN (Convolutional Neural Networks optimized by Mode Normalization (MN) and Efficient Channel Attention (ECA)) is proposed. Firstly, Mel filters are adopted to extract the feature of different frequency bands of vibration signal, and by the feature enhancement of Cepstrum Lifting Technique, the final 2D MFCC is obtained. Secondly, MN is applied to reduce the internal covariant shift caused by the data distribution discrepancy, and improve the generalization ability. ECA is adopted to enhance the fault feature and improve anti-interference ability. Finally, experiments under data distribution shift have been carried out, and an average accuracy of 99.72% was obtained under the data imbalance, and 99.50% was obtained under the operating condition change. Compared with the existing methods, the proposed has higher accuracy and better domain adaptability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幸福的自中完成签到 ,获得积分10
1秒前
2秒前
Akim应助zouzhao采纳,获得10
2秒前
2秒前
李健应助南城雨落采纳,获得10
2秒前
lls发布了新的文献求助10
3秒前
斯文败类应助淡然水蜜桃采纳,获得30
3秒前
CodeCraft应助彭新铭采纳,获得10
4秒前
CXX发布了新的文献求助10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
吉仔应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
6秒前
ding应助科研通管家采纳,获得10
6秒前
大个应助科研通管家采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
6秒前
面壁思过应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
ding应助xiaoxiao采纳,获得10
6秒前
爆米花应助余小胖采纳,获得10
6秒前
wanci应助顺心白开水采纳,获得10
7秒前
科研通AI2S应助英勇羿采纳,获得10
7秒前
7秒前
Orange应助纪尔蓝采纳,获得10
7秒前
飞飞完成签到,获得积分10
7秒前
8秒前
cassies完成签到 ,获得积分10
9秒前
冲冲完成签到,获得积分10
9秒前
澈哩子发布了新的文献求助10
9秒前
Hi发布了新的文献求助10
10秒前
huhuhuhuhu完成签到 ,获得积分10
11秒前
11秒前
鹭江完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653416
求助须知:如何正确求助?哪些是违规求助? 4789940
关于积分的说明 15064113
捐赠科研通 4812066
什么是DOI,文献DOI怎么找? 2574236
邀请新用户注册赠送积分活动 1529924
关于科研通互助平台的介绍 1488633