亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Intelligent Rolling Bearing Imbalanced Fault Diagnosis based on Mel-Frequency Cepstrum Coefficient and Convolutional Neural Networks

规范化(社会学) Mel倒谱 倒谱 模式识别(心理学) 计算机科学 特征提取 人工智能 特征(语言学) 频域 语音识别 计算机视觉 人类学 语言学 哲学 社会学
作者
Peng Yao,Jinxi Wang,Faye Zhang,Wei Li,Shanshan Lv,Mingshun Jiang,Lei Jia
出处
期刊:Measurement [Elsevier]
卷期号:: 112143-112143
标识
DOI:10.1016/j.measurement.2022.112143
摘要

• Mel-Frequency Cepstrum Coefficient (MFCC) is adopted to better extract low and medium frequency feature, and use cepstrum lifting technique for feature enhancement. • To improve the domain adaptability of the MECNN proposed, use Mode Normalization to reduce the internal covariant shift caused by data distribution discrepancy, and Effective Channel Attention is adopted to enhance the feature to improve the anti-interference ability. • To evaluate the performance of the MFCC-MECNN method proposed, set 2 types of data distribution shift experiments (data imbalance and operating condition change). To improve the bearing fault diagnosis performance under the condition of data distribution shift, an intelligent diagnosis method based on MFCC (Mel-Frequency Cepstrum Coefficient) and MECNN (Convolutional Neural Networks optimized by Mode Normalization (MN) and Efficient Channel Attention (ECA)) is proposed. Firstly, Mel filters are adopted to extract the feature of different frequency bands of vibration signal, and by the feature enhancement of Cepstrum Lifting Technique, the final 2D MFCC is obtained. Secondly, MN is applied to reduce the internal covariant shift caused by the data distribution discrepancy, and improve the generalization ability. ECA is adopted to enhance the fault feature and improve anti-interference ability. Finally, experiments under data distribution shift have been carried out, and an average accuracy of 99.72% was obtained under the data imbalance, and 99.50% was obtained under the operating condition change. Compared with the existing methods, the proposed has higher accuracy and better domain adaptability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XiaoXiao完成签到,获得积分10
4秒前
Charlie完成签到,获得积分10
16秒前
夏天的蜜雪冰城完成签到,获得积分10
18秒前
...完成签到,获得积分10
20秒前
abiorz完成签到,获得积分10
28秒前
窗外是蔚蓝色完成签到,获得积分10
29秒前
32秒前
lewis发布了新的文献求助10
35秒前
36秒前
40秒前
郝君颖完成签到 ,获得积分10
51秒前
小蘑菇应助zyutao采纳,获得10
55秒前
gogo完成签到,获得积分10
56秒前
ljj完成签到,获得积分20
59秒前
Heisenberg完成签到,获得积分0
1分钟前
haoliu完成签到 ,获得积分10
1分钟前
1分钟前
Ava应助ljj采纳,获得10
1分钟前
gogo发布了新的文献求助20
1分钟前
tao完成签到 ,获得积分10
1分钟前
莫名乐乐完成签到,获得积分10
1分钟前
1分钟前
1分钟前
lewis发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
FashionBoy应助科研通管家采纳,获得10
1分钟前
1分钟前
乐乐应助gogo采纳,获得10
1分钟前
1分钟前
wanci应助SOBER采纳,获得10
1分钟前
Flexy发布了新的文献求助10
2分钟前
2分钟前
Moonlight发布了新的文献求助10
2分钟前
2分钟前
2分钟前
狮子沟核聚变骡子完成签到 ,获得积分10
2分钟前
konosuba完成签到,获得积分10
2分钟前
SOBER发布了新的文献求助10
2分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162280
求助须知:如何正确求助?哪些是违规求助? 2813284
关于积分的说明 7899607
捐赠科研通 2472592
什么是DOI,文献DOI怎么找? 1316476
科研通“疑难数据库(出版商)”最低求助积分说明 631365
版权声明 602142