Intelligent Rolling Bearing Imbalanced Fault Diagnosis based on Mel-Frequency Cepstrum Coefficient and Convolutional Neural Networks

规范化(社会学) Mel倒谱 倒谱 模式识别(心理学) 计算机科学 特征提取 人工智能 特征(语言学) 频域 语音识别 计算机视觉 语言学 哲学 社会学 人类学
作者
Peng Yao,Jinxi Wang,Faye Zhang,Wei Li,Shanshan Lv,Mingshun Jiang,Lei Jia
出处
期刊:Measurement [Elsevier BV]
卷期号:: 112143-112143
标识
DOI:10.1016/j.measurement.2022.112143
摘要

• Mel-Frequency Cepstrum Coefficient (MFCC) is adopted to better extract low and medium frequency feature, and use cepstrum lifting technique for feature enhancement. • To improve the domain adaptability of the MECNN proposed, use Mode Normalization to reduce the internal covariant shift caused by data distribution discrepancy, and Effective Channel Attention is adopted to enhance the feature to improve the anti-interference ability. • To evaluate the performance of the MFCC-MECNN method proposed, set 2 types of data distribution shift experiments (data imbalance and operating condition change). To improve the bearing fault diagnosis performance under the condition of data distribution shift, an intelligent diagnosis method based on MFCC (Mel-Frequency Cepstrum Coefficient) and MECNN (Convolutional Neural Networks optimized by Mode Normalization (MN) and Efficient Channel Attention (ECA)) is proposed. Firstly, Mel filters are adopted to extract the feature of different frequency bands of vibration signal, and by the feature enhancement of Cepstrum Lifting Technique, the final 2D MFCC is obtained. Secondly, MN is applied to reduce the internal covariant shift caused by the data distribution discrepancy, and improve the generalization ability. ECA is adopted to enhance the fault feature and improve anti-interference ability. Finally, experiments under data distribution shift have been carried out, and an average accuracy of 99.72% was obtained under the data imbalance, and 99.50% was obtained under the operating condition change. Compared with the existing methods, the proposed has higher accuracy and better domain adaptability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
瘦瘦的依玉完成签到 ,获得积分10
刚刚
科研通AI5应助要减肥天问采纳,获得10
刚刚
万能图书馆应助Friday采纳,获得10
1秒前
Li完成签到,获得积分20
2秒前
2秒前
麦子发布了新的文献求助10
3秒前
3秒前
威武画板给威武画板的求助进行了留言
4秒前
淡淡嫣发布了新的文献求助10
4秒前
PZL完成签到,获得积分10
6秒前
顺利毕业发布了新的文献求助10
7秒前
8秒前
Friday完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
9秒前
11秒前
FashionBoy应助adreamy采纳,获得10
12秒前
鹿茸与共发布了新的文献求助10
12秒前
FashionBoy应助ll采纳,获得10
13秒前
机智幻嫣发布了新的文献求助10
13秒前
Marilyn完成签到 ,获得积分10
13秒前
lpw发布了新的文献求助10
13秒前
李健应助烂漫绿海采纳,获得10
13秒前
小慧完成签到 ,获得积分10
14秒前
127发布了新的文献求助10
14秒前
bkagyin应助windows采纳,获得10
14秒前
nipangle发布了新的文献求助30
14秒前
现实的听芹完成签到,获得积分10
15秒前
6666完成签到,获得积分20
16秒前
上善若水完成签到 ,获得积分10
17秒前
幸福妙柏发布了新的文献求助10
17秒前
岳桐发布了新的文献求助30
18秒前
淡淡嫣完成签到,获得积分10
20秒前
情怀应助浅夏采纳,获得10
21秒前
23秒前
Ava应助melody采纳,获得10
23秒前
llm19完成签到,获得积分10
24秒前
修士阿贤完成签到,获得积分10
24秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998752
求助须知:如何正确求助?哪些是违规求助? 3538216
关于积分的说明 11273702
捐赠科研通 3277200
什么是DOI,文献DOI怎么找? 1807436
邀请新用户注册赠送积分活动 883893
科研通“疑难数据库(出版商)”最低求助积分说明 810075