亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning for predicting battery capacity for electric vehicles

电池(电) 机器学习 噪音(视频) 均方误差 平均绝对百分比误差 特征(语言学) 计算机科学 人工智能 统计 人工神经网络 数学 物理 图像(数学) 哲学 语言学 功率(物理) 量子力学
作者
Jingyuan Zhao,Heping Ling,Jin Liu,Junbin Wang,Andrew Burke,Yubo Lian
出处
期刊:eTransportation [Elsevier]
卷期号:15: 100214-100214 被引量:64
标识
DOI:10.1016/j.etran.2022.100214
摘要

Predicting the evolution of multiphysics battery systems face severe challenges, including various aging mechanisms, cell-to-cell variation and dynamic operating conditions. Despite significant progress, solving real-life battery problems with noisy and missing data and high-dimensional parameter space are either difficult or impossible. In this paper, we design and evaluate feature-based machine learning techniques for estimating the capacity of large format LiFePO4 batteries in EV applications and hence predicting the trajectory of capacity fade based on the estimations. To probe the feature space, we generate a comprehensive dataset consisting of 420 cells and 9 battery packs (178 cells in-series for each one) with more than 10,000 validation data derived from the cloud platform. A two-step noise reduction method is applied to de-noise the scattered field data (30s sampling interval). Totally, 39 domain features are engineered using the reconstructed segments of battery charging data based on the differential methods (increment capacity and differential voltage), which steer the learning process towards accurate and physically consistent predictions by leveraging the stacking ensemble learning. The stacking, comprised of four base learning models referred to as level-1 predictors and a meta-learner referred to as level-2 predictor applied to combine predictions of base learners with probability distributions using an extended set of meta-level features offers exciting opportunities for better accuracy and improved generalization. Our best models achieve 0.28% mean absolute percentage error (MAPE) and 0.55% root mean squared percent error (RMSPE) for battery capacity estimation. Further, 1.22% average percentage error is achieved in the prediction of remaining useful lifetime (RUL) under different conditions of driving distance (km) and service time (day) by building capacity fade trajectory based on a Bayesian regression. This work highlights the promise of machine learning modelling using domain-specific features for accurate estimation and prediction of real-life battery systems based on field data collection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助顺心含蕾采纳,获得10
2秒前
科研通AI2S应助体贴花卷采纳,获得10
3秒前
语嘘嘘发布了新的文献求助10
13秒前
jeff完成签到,获得积分10
14秒前
CUI应助伟航采纳,获得10
31秒前
小张完成签到 ,获得积分10
32秒前
Albert完成签到,获得积分10
35秒前
清爽老九应助bryceeluo采纳,获得10
56秒前
1分钟前
1分钟前
桓某人发布了新的文献求助10
1分钟前
呆萌念梦完成签到,获得积分20
1分钟前
1分钟前
phoenix完成签到 ,获得积分10
1分钟前
1分钟前
qmln4发布了新的文献求助10
1分钟前
1分钟前
qmln4完成签到,获得积分20
1分钟前
zhmnydb发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
在水一方应助幸福的小霜采纳,获得10
1分钟前
onecloudhere发布了新的文献求助10
1分钟前
Bunnies完成签到,获得积分10
2分钟前
yingzaifeixiang完成签到 ,获得积分10
2分钟前
CUI应助width采纳,获得10
2分钟前
onecloudhere完成签到,获得积分10
2分钟前
zhmnydb完成签到,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
Lin完成签到,获得积分10
3分钟前
zqq完成签到,获得积分0
3分钟前
铁臂阿童木完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
体贴花卷发布了新的文献求助10
3分钟前
3分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314391
求助须知:如何正确求助?哪些是违规求助? 2946633
关于积分的说明 8531143
捐赠科研通 2622373
什么是DOI,文献DOI怎么找? 1434483
科研通“疑难数据库(出版商)”最低求助积分说明 665329
邀请新用户注册赠送积分活动 650881