Full-field expansion and damage detection from sparse measurements using physics-informed variational autoencoders

领域(数学) 物理 人工智能 统计物理学 计算机科学 数学 纯数学
作者
Nitin Nagesh Kulkarni,Alessandro Sabato
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
标识
DOI:10.1177/14759217241289575
摘要

Recent advancements in machine learning and artificial neural network algorithms have created new opportunities for expanding sparse measurements to full-field representations. However, these methods often face accuracy challenges when used for condition monitoring of physical systems. For example, traditional autoencoders can capture complex phenomena and their underlying physics in the latent space, but due to their frequentist nature, they lack generative and damage detection capabilities. To address these challenges, a novel physics-informed variational autoencoder (PI-VAE) network is proposed for expanding sparse measurements to full-field representations while also detecting damage. The effectiveness of the proposed PI-VAE network is evaluated through analytical and experimental studies on a metal plate under thermal excitation with embedded defects of various sizes and types. In the analytical studies using finite-element model data, the PI-VAE accurately expanded full-field temperature distributions and identified the dimensions of cracks, spalling, and hole-like defects with errors smaller than 5%. When tested with experimental data, the PI-VAE network maintained robust performance, detecting damage with errors smaller than 6%, despite being trained on undamaged data only. These findings demonstrate the PI-VAE’s potential as a reliable tool for full-field expansion and damage detection in structural health monitoring and nondestructive evaluation, even when limited sensors and datasets are available.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Jeffy发布了新的文献求助10
1秒前
李李李发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
xushufang发布了新的文献求助20
3秒前
3秒前
4秒前
汉字发布了新的文献求助20
4秒前
典雅安寒完成签到,获得积分10
4秒前
李健应助一年好景采纳,获得10
4秒前
Cartry完成签到,获得积分10
4秒前
Am发布了新的文献求助20
6秒前
DYQin发布了新的文献求助10
6秒前
Qxt发布了新的文献求助10
6秒前
自由的友灵完成签到,获得积分10
7秒前
今后应助东子衿采纳,获得10
8秒前
8秒前
hangsir完成签到,获得积分10
8秒前
KTKT完成签到,获得积分10
9秒前
桐桐应助Xiaoyu采纳,获得10
9秒前
魈玖完成签到,获得积分10
10秒前
syy完成签到,获得积分20
10秒前
hangsir发布了新的文献求助10
11秒前
Qxt完成签到,获得积分10
13秒前
小树完成签到,获得积分10
14秒前
bjhhhhhj完成签到,获得积分10
14秒前
14秒前
16秒前
文艺月饼完成签到,获得积分10
16秒前
晴空完成签到,获得积分10
16秒前
17秒前
威武巧曼发布了新的文献求助10
17秒前
完美世界应助DYQin采纳,获得10
19秒前
66完成签到,获得积分10
19秒前
59发布了新的文献求助10
20秒前
20秒前
20秒前
光亮芷天完成签到,获得积分10
20秒前
高分求助中
Sustainability in ’Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3074861
求助须知:如何正确求助?哪些是违规求助? 2728212
关于积分的说明 7502977
捐赠科研通 2376311
什么是DOI,文献DOI怎么找? 1259944
科研通“疑难数据库(出版商)”最低求助积分说明 610771
版权声明 597101