食品集团
精制谷物
医学
食品科学
观察研究
代谢组学
生物技术
生物
环境卫生
生物信息学
全谷物
内科学
作者
Víctor de la O,Edwin Fernández‐Cruz,Alberto Valdés,Alejandro Cifuentes,Janette Walton,J Alfredo Martínez
出处
期刊:Nutrition Reviews
[Oxford University Press]
日期:2024-08-27
标识
DOI:10.1093/nutrit/nuae133
摘要
Abstract Objective To conduct an exhaustive scoping search of existing literature, incorporating diverse bibliographic sources to elucidate the relationships between metabolite biomarkers in human fluids and dietary intake. Background The search for biomarkers linked to specific dietary food intake holds immense significance for precision health and nutrition research. Using objective methods to track food consumption through metabolites offers a more accurate way to provide dietary advice and prescriptions on healthy dietary patterns by healthcare professionals. An extensive investigation was conducted on biomarkers associated with the consumption of several food groups and consumption patterns. Evidence is integrated from observational studies, systematic reviews, and meta-analyses to achieve precision nutrition and metabolism personalization. Methods Tailored search strategies were applied across databases and gray literature, yielding 158 primary research articles that met strict inclusion criteria. The collected data underwent rigorous analysis using STATA and Python tools. Biomarker–food associations were categorized into 5 groups: cereals and grains, dairy products, protein-rich foods, plant-based foods, and a miscellaneous group. Specific cutoff points (≥3 or ≥4 bibliographic appearances) were established to identify reliable biomarkers indicative of dietary consumption. Results Key metabolites in plasma, serum, and urine revealed intake from different food groups. For cereals and grains, 3-(3,5-dihydroxyphenyl) propanoic acid glucuronide and 3,5-dihydroxybenzoic acid were significant. Omega-3 fatty acids and specific amino acids showcased dairy and protein foods consumption. Nuts and seafood were linked to hypaphorine and trimethylamine N-oxide. The miscellaneous group featured compounds like theobromine, 7-methylxanthine, caffeine, quinic acid, paraxanthine, and theophylline associated with coffee intake. Conclusions Data collected from this research demonstrate potential for incorporating precision nutrition into clinical settings and nutritional advice based on accurate estimation of food intake. By customizing dietary recommendations based on individualized metabolic profiles, this approach could significantly improve personalized food consumption health prescriptions and support integrating multiple nutritional data. This article is part of a Nutrition Reviews special collection on Precision Nutrition.
科研通智能强力驱动
Strongly Powered by AbleSci AI