RetVes segmentation: A pseudo-labeling and feature knowledge distillation optimization technique for retinal vessel channel enhancement

分割 计算机科学 特征(语言学) 人工智能 频道(广播) 视网膜 模式识别(心理学) 计算机视觉 化学 生物化学 电信 语言学 哲学
作者
Favour Ekong,Yongbin Yu,Rutherford Agbeshi Patamia,Kwabena Sarpong,Chiagoziem C. Ukwuoma,Akpanika Robert Ukot,Jingye Cai
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:182: 109150-109150
标识
DOI:10.1016/j.compbiomed.2024.109150
摘要

Recent advancements in retinal vessel segmentation, which employ transformer-based and domain-adaptive approaches, show promise in addressing the complexity of ocular diseases such as diabetic retinopathy. However, current algorithms face challenges in effectively accommodating domain-specific variations and limitations of training datasets, which fail to represent real-world conditions comprehensively. Manual inspection by specialists remains time-consuming despite technological progress in medical imaging, underscoring the pressing need for automated and robust segmentation techniques. Additionally, these methods have deficiencies in handling unlabeled target sets, requiring extra preprocessing steps and manual intervention, which hinders their scalability and practical application in clinical settings. This research introduces a novel framework that employs semi-supervised domain adaptation and contrastive pre-training to address these limitations. The proposed model effectively learns from target data by implementing a novel pseudo-labeling approach and feature-based knowledge distillation within a temporal convolutional network (TCN) and extracts robust, domain-independent features. This approach enhances cross-domain adaptation, significantly enhancing the model's versatility and performance in clinical settings. The semi-supervised domain adaptation component overcomes the challenges posed by domain shifts, while pseudo-labeling utilizes the data's inherent structure for enhanced learning, which is particularly beneficial when labeled data is scarce. Evaluated on the DRIVE and CHASE_DB1 datasets, which contain clinical fundus images, the proposed model achieves outstanding performance, with accuracy, sensitivity, specificity, and AUC values of 0.9792, 0.8640, 0.9901, and 0.9868 on DRIVE, and 0.9830, 0.9058, 0.9888, and 0.9950 on CHASE_DB1, respectively, outperforming current state-of-the-art vessel segmentation methods. The partitioning of datasets into training and testing sets ensures thorough validation, while extensive ablation studies with thorough sensitivity analysis of the model's parameters and different percentages of labeled data further validate its robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Seven发布了新的文献求助10
2秒前
AKira完成签到,获得积分10
2秒前
3秒前
4秒前
4秒前
5秒前
赵小麦完成签到,获得积分20
5秒前
5秒前
AKira发布了新的文献求助10
5秒前
大模型应助海森堡采纳,获得10
6秒前
7秒前
8秒前
NexusExplorer应助FG采纳,获得10
9秒前
包子妹妹发布了新的文献求助10
9秒前
dbq发布了新的文献求助10
10秒前
独一无二发布了新的文献求助10
10秒前
Martina发布了新的文献求助10
10秒前
11秒前
kelly完成签到,获得积分10
11秒前
共享精神应助123采纳,获得10
11秒前
老夫子发布了新的文献求助10
11秒前
ZX完成签到,获得积分10
12秒前
小二郎应助净土采纳,获得10
13秒前
小蘑菇应助ju龙哥采纳,获得10
14秒前
去码头整点薯条完成签到,获得积分10
14秒前
15秒前
hanscao完成签到,获得积分10
15秒前
abc完成签到,获得积分10
15秒前
eeeee发布了新的文献求助10
17秒前
周不不完成签到,获得积分10
17秒前
17秒前
Akim应助潺潺流水采纳,获得10
18秒前
19秒前
老夫子完成签到,获得积分10
19秒前
ywindm发布了新的文献求助30
20秒前
SciGPT应助Martina采纳,获得10
22秒前
22秒前
哩哩发布了新的文献求助10
23秒前
albertxin完成签到,获得积分10
23秒前
23秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3489857
求助须知:如何正确求助?哪些是违规求助? 3076978
关于积分的说明 9147123
捐赠科研通 2769152
什么是DOI,文献DOI怎么找? 1519630
邀请新用户注册赠送积分活动 704069
科研通“疑难数据库(出版商)”最低求助积分说明 702084