Ambulatory ECG noise reduction algorithm for conditional diffusion model based on multi-kernel convolutional transformer

计算机科学 降噪 噪音(视频) 工件(错误) 人工智能 波形 模式识别(心理学) 算法 电信 图像(数学) 雷达
作者
Huiquan Wang,J. Zhang,Xinming Dong,T. Q. Wang,Xin Ma,Jinhai Wang
出处
期刊:Review of Scientific Instruments [American Institute of Physics]
卷期号:95 (9)
标识
DOI:10.1063/5.0222123
摘要

Ambulatory electrocardiogram (ECG) testing plays a crucial role in the early detection, diagnosis, treatment evaluation, and prevention of cardiovascular diseases. Clear ECG signals are essential for the subsequent analysis of these conditions. However, ECG signals obtained during exercise are susceptible to various noise interferences, including electrode motion artifact, baseline wander, and muscle artifact. These interferences can blur the characteristic ECG waveforms, potentially leading to misjudgment by physicians. To suppress noise in ECG signals more effectively, this paper proposes a novel deep learning-based noise reduction method. This method enhances the diffusion model network by introducing conditional noise, designing a multi-kernel convolutional transformer network structure based on noise prediction, and integrating the diffusion model inverse process to achieve noise reduction. Experiments were conducted on the QT database and MIT-BIH Noise Stress Test Database and compared with the algorithms in other papers to verify the effectiveness of the present method. The results indicate that the proposed method achieves optimal noise reduction performance across both statistical and distance-based evaluation metrics as well as waveform visualization, surpassing eight other state-of-the-art methods. The network proposed in this paper demonstrates stable performance in addressing electrode motion artifact, baseline wander, muscle artifact, and the mixed complex noise of these three types, and it is anticipated to be applied in future noise reduction analysis of clinical dynamic ECG signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
哈哈哈哈哈完成签到,获得积分10
1秒前
2秒前
善学以致用应助牵墨采纳,获得10
3秒前
安阳完成签到,获得积分10
3秒前
明天过后完成签到,获得积分10
3秒前
4秒前
5秒前
5秒前
bad boy完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
7秒前
7秒前
通通通发布了新的文献求助10
7秒前
cyy1226完成签到,获得积分10
8秒前
小燕子完成签到 ,获得积分10
8秒前
盛夏之末完成签到,获得积分10
9秒前
爆米花应助简单如容采纳,获得10
9秒前
zgtmark完成签到,获得积分10
9秒前
SciGPT应助懵懂的梦秋采纳,获得10
9秒前
就月听雨完成签到,获得积分10
11秒前
11秒前
FBQZDJG2122完成签到,获得积分10
11秒前
燕燕完成签到 ,获得积分10
11秒前
张微浪完成签到,获得积分20
11秒前
啥时候吃火锅完成签到 ,获得积分0
12秒前
12秒前
12秒前
调皮帆布鞋完成签到,获得积分10
13秒前
xu发布了新的文献求助10
13秒前
Ly发布了新的文献求助10
13秒前
jioujg完成签到,获得积分10
13秒前
jioujg发布了新的文献求助10
16秒前
米六发布了新的文献求助10
16秒前
18秒前
xiaogang127发布了新的文献求助10
18秒前
CodeCraft应助河道蟹采纳,获得10
18秒前
leon发布了新的文献求助10
18秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162769
求助须知:如何正确求助?哪些是违规求助? 2813685
关于积分的说明 7901577
捐赠科研通 2473296
什么是DOI,文献DOI怎么找? 1316715
科研通“疑难数据库(出版商)”最低求助积分说明 631516
版权声明 602175