Uncertainty Qualification for Deep Learning-Based Elementary Reaction Property Prediction

财产(哲学) 人工智能 计算机科学 机器学习 数学教育 计量经济学 数学 认识论 哲学
作者
Lei Zhu,Yiming Mo,Youwei Cheng
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.4c01358
摘要

The prediction of the thermodynamic and kinetic properties of elementary reactions has shown rapid improvement due to the implementation of deep learning (DL) methods. While various studies have reported the success in predicting reaction properties, the quantification of prediction uncertainty has seldom been investigated, thus compromising the confidence in using these predicted properties in practical applications. Here, we integrated graph convolutional neural networks (GCNN) with three uncertainty prediction techniques, including deep ensemble, Monte Carlo (MC)-dropout, and evidential learning, to provide insights into the uncertainty quantification and utility. The deep ensemble model outperforms others in accuracy and shows the highest reliability in estimating prediction uncertainty across all elementary reaction property data sets. We also verified that the deep ensemble model showed a satisfactory capability in recognizing epistemic and aleatoric uncertainties. Additionally, we adopted a Monte Carlo Tree Search method for extracting the explainable reaction substructures, providing a chemical explanation for DL predicted properties and corresponding uncertainties. Finally, to demonstrate the utility of uncertainty qualification in practical applications, we performed an uncertainty-guided calibration of the DL-constructed kinetic model, which achieved a 25% higher hit ratio in identifying dominant reaction pathways compared to that of the calibration without uncertainty guidance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LLL完成签到,获得积分10
1秒前
liuliumei完成签到,获得积分10
1秒前
华仔应助呼啦呼啦咔采纳,获得10
1秒前
wangg发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
2秒前
英姑应助Zhong采纳,获得10
3秒前
3秒前
4秒前
Hu111发布了新的文献求助10
4秒前
开朗熊猫完成签到,获得积分10
5秒前
JAMA完成签到,获得积分10
6秒前
6秒前
小杨快看呀完成签到,获得积分10
7秒前
Orange应助wangg采纳,获得10
7秒前
MRCHONG完成签到,获得积分10
7秒前
哈哈哈哈发布了新的文献求助10
7秒前
poletar完成签到,获得积分10
7秒前
柠檬发布了新的文献求助10
7秒前
沉静的夜玉完成签到,获得积分10
7秒前
gaos发布了新的文献求助10
7秒前
MADKAI发布了新的文献求助10
8秒前
搬砖美少女完成签到,获得积分10
8秒前
8秒前
风起完成签到 ,获得积分10
8秒前
fifteen应助雪123采纳,获得10
8秒前
8秒前
香蕉觅云应助开朗熊猫采纳,获得10
9秒前
吱嗷赵发布了新的文献求助10
9秒前
zxyhhh完成签到 ,获得积分10
9秒前
霸气梦菲完成签到 ,获得积分10
9秒前
CodeCraft应助hhh采纳,获得10
9秒前
Zhaorf发布了新的文献求助10
10秒前
MRCHONG发布了新的文献求助10
10秒前
10秒前
Akim应助liuchao采纳,获得10
10秒前
动听的人英完成签到 ,获得积分10
10秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672