Uncertainty Qualification for Deep Learning-Based Elementary Reaction Property Prediction

财产(哲学) 人工智能 计算机科学 机器学习 数学教育 计量经济学 数学 认识论 哲学
作者
Lei Zhu,Yiming Mo,Youwei Cheng
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.4c01358
摘要

The prediction of the thermodynamic and kinetic properties of elementary reactions has shown rapid improvement due to the implementation of deep learning (DL) methods. While various studies have reported the success in predicting reaction properties, the quantification of prediction uncertainty has seldom been investigated, thus compromising the confidence in using these predicted properties in practical applications. Here, we integrated graph convolutional neural networks (GCNN) with three uncertainty prediction techniques, including deep ensemble, Monte Carlo (MC)-dropout, and evidential learning, to provide insights into the uncertainty quantification and utility. The deep ensemble model outperforms others in accuracy and shows the highest reliability in estimating prediction uncertainty across all elementary reaction property data sets. We also verified that the deep ensemble model showed a satisfactory capability in recognizing epistemic and aleatoric uncertainties. Additionally, we adopted a Monte Carlo Tree Search method for extracting the explainable reaction substructures, providing a chemical explanation for DL predicted properties and corresponding uncertainties. Finally, to demonstrate the utility of uncertainty qualification in practical applications, we performed an uncertainty-guided calibration of the DL-constructed kinetic model, which achieved a 25% higher hit ratio in identifying dominant reaction pathways compared to that of the calibration without uncertainty guidance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一颗小可可完成签到,获得积分20
刚刚
刚刚
3秒前
3秒前
lz发布了新的文献求助10
3秒前
3秒前
4秒前
5秒前
打打应助addd采纳,获得10
6秒前
7秒前
风清扬发布了新的文献求助30
8秒前
ZR14124发布了新的文献求助50
8秒前
8R60d8应助园田真理采纳,获得10
8秒前
无花果应助lv采纳,获得10
9秒前
pp猪猪发布了新的文献求助10
10秒前
长风完成签到 ,获得积分10
10秒前
科研小白发布了新的文献求助10
11秒前
11秒前
稳重的愫完成签到 ,获得积分10
13秒前
xiaoningmeng发布了新的文献求助10
13秒前
13秒前
北鱼发布了新的文献求助10
13秒前
yznfly应助司空豁采纳,获得30
14秒前
15秒前
AiQi完成签到 ,获得积分10
17秒前
调皮的凝旋完成签到,获得积分10
18秒前
我是老大应助pp猪猪采纳,获得10
18秒前
19秒前
addd发布了新的文献求助10
19秒前
19秒前
xiaoningmeng完成签到,获得积分10
20秒前
20秒前
21秒前
annice完成签到,获得积分10
21秒前
22秒前
上官若男应助白日焰火采纳,获得10
25秒前
annice发布了新的文献求助10
25秒前
李健应助WX采纳,获得10
26秒前
量子星尘发布了新的文献求助10
27秒前
addd完成签到,获得积分10
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956715
求助须知:如何正确求助?哪些是违规求助? 3502823
关于积分的说明 11110282
捐赠科研通 3233774
什么是DOI,文献DOI怎么找? 1787498
邀请新用户注册赠送积分活动 870685
科研通“疑难数据库(出版商)”最低求助积分说明 802172