DefendFL: A Privacy-Preserving Federated Learning Scheme Against Poisoning Attacks

方案(数学) 计算机科学 计算机安全 互联网隐私 数学 数学分析
作者
Jiao Liu,Xinghua Li,Ximeng Liu,Haiyan Zhang,Yinbin Miao,Robert H. Deng
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tnnls.2024.3423397
摘要

Federated learning (FL) has become a popular mode of learning, allowing model training without the need to share data. Unfortunately, it remains vulnerable to privacy leakage and poisoning attacks, which compromise user data security and degrade model quality. Therefore, numerous privacy-preserving frameworks have been proposed, among which mask-based framework has certain advantages in terms of efficiency and functionality. However, it is more susceptible to poisoning attacks from malicious users, and current works lack practical means to detect such attacks within this framework. To overcome this challenge, we present DefendFL, an efficient, privacy-preserving, and poisoning-detectable mask-based FL scheme. We first leverage collinearity mask to protect users' gradient privacy. Then, cosine similarity is utilized to detect masked gradients to identify poisonous gradients. Meanwhile, a verification mechanism is designed to detect the mask, ensuring the mask's validity in aggregation and preventing poisoning attacks by intentionally changing the mask. Finally, we resist poisoning attacks by removing malicious gradients or lowering their weights in aggregation. Through security analysis and experimental evaluation, DefendFL can effectively detect and mitigate poisoning attacks while outperforming existing privacy-preserving detection works in efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
陈婷婷发布了新的文献求助10
2秒前
酷卡卡完成签到,获得积分10
2秒前
3秒前
www发布了新的文献求助10
3秒前
AYY完成签到,获得积分10
3秒前
3秒前
Orange应助赫赫采纳,获得10
5秒前
6秒前
hazardatom完成签到,获得积分10
8秒前
8秒前
长期素食发布了新的文献求助10
9秒前
ured发布了新的文献求助20
11秒前
123456完成签到,获得积分0
13秒前
16秒前
17秒前
科研通AI2S应助王一刀采纳,获得10
19秒前
隐形曼青应助ured采纳,获得10
20秒前
Louis发布了新的文献求助10
20秒前
AU发布了新的文献求助10
20秒前
MOON完成签到,获得积分10
21秒前
科研顺利完成签到 ,获得积分10
21秒前
21秒前
大牛完成签到,获得积分10
22秒前
22秒前
25秒前
26秒前
畅快新之发布了新的文献求助10
28秒前
29秒前
阳光大有应助侯MM采纳,获得10
30秒前
2587发布了新的文献求助10
31秒前
31秒前
凡帝发布了新的文献求助10
32秒前
Jasper应助长期素食采纳,获得10
34秒前
pink完成签到,获得积分10
34秒前
王一刀发布了新的文献求助10
35秒前
libs发布了新的文献求助10
35秒前
Johnho12047完成签到,获得积分10
35秒前
36秒前
化学胖子完成签到,获得积分10
37秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124628
求助须知:如何正确求助?哪些是违规求助? 2774894
关于积分的说明 7724629
捐赠科研通 2430451
什么是DOI,文献DOI怎么找? 1291102
科研通“疑难数据库(出版商)”最低求助积分说明 622063
版权声明 600323