Integration of Spinal Musculoskeletal System Parameters for Predicting OVCF in the Elderly: A Comprehensive Predictive Model

医学 列线图 逻辑回归 一致性 人口 肌萎缩 物理疗法 核医学 内科学 环境卫生
作者
Song Wang,Xin Zhang,Junyong Zheng,Guoliang Chen,Genlong Jiao,Songlin Peng
出处
期刊:Global Spine Journal [SAGE Publishing]
被引量:2
标识
DOI:10.1177/21925682241274371
摘要

Study Design Systematic literature review. Objectives To develop a predictive model for osteoporotic vertebral compression fractures (OVCF) in the elderly, utilizing current tools that are sensitive to bone and paraspinal muscle changes. Methods A retrospective analysis of data from 260 patients from October 2020 to December 2022, to form the Model population. This group was split into Training and Testing sets. The Training set aided in creating a nomogram through binary logistic regression. From January 2023 to January 2024, we prospectively collected data from 106 patients to constitute the Validation population. The model’s performance was evaluated using concordance index (C-index), calibration curves, and decision curve analysis (DCA) for both internal and external validation. Results The study included 366 patients. The Training and Testing sets were used for nomogram construction and internal validation, while the prospectively collected data was for external validation. Binary logistic regression identified nine independent OVCF risk factors: age, bone mineral density (BMD), quantitative computed tomography (QCT), vertebral bone quality (VBQ), relative functional cross-sectional area of psoas muscles (rFCSA PS ), gross and functional muscle fat infiltration of multifidus and psoas muscles (GMFI ES+MF and FMFI ES+MF ), FMFI PS , and mean muscle ratio. The nomogram showed an area under the curve (AUC) of 0.91 for the C-index, with internal and external validation AUCs of 0.90 and 0.92. Calibration curves and DCA indicated a good model fit. Conclusions This study identified nine factors as independent predictors of OVCF in the elderly. A nomogram including these factors was developed, proving effective for OVCF prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助yuaasusanaann采纳,获得10
刚刚
言亦云完成签到,获得积分10
刚刚
刚刚
小二郎应助冷酷严青采纳,获得10
1秒前
我是老大应助xiaohansan采纳,获得10
1秒前
Jerry完成签到,获得积分10
1秒前
mqq完成签到 ,获得积分10
2秒前
殷勤的若之完成签到,获得积分10
2秒前
CAOHOU给廖镐文的求助进行了留言
3秒前
张础锐发布了新的文献求助10
3秒前
tiantale发布了新的文献求助10
3秒前
3秒前
美好斓发布了新的文献求助10
4秒前
小情绪完成签到 ,获得积分10
4秒前
孤独海蓝完成签到,获得积分10
4秒前
123完成签到 ,获得积分10
4秒前
5秒前
苏獭应助四火采纳,获得10
5秒前
li发布了新的文献求助10
5秒前
6秒前
6秒前
Ricardo完成签到,获得积分10
6秒前
ting发布了新的文献求助10
7秒前
7秒前
7秒前
zhangbei发布了新的文献求助20
8秒前
9秒前
xxywmt发布了新的文献求助10
9秒前
rayzhanghl完成签到,获得积分10
9秒前
充电宝应助等待的依风采纳,获得10
9秒前
顾矜应助研友_8DAv0L采纳,获得10
9秒前
笨笨垣发布了新的文献求助10
10秒前
tangz完成签到,获得积分20
10秒前
10秒前
zyx发布了新的文献求助20
11秒前
SYLH应助冷酷严青采纳,获得10
11秒前
科研yu完成签到,获得积分10
11秒前
tangz发布了新的文献求助10
13秒前
susancat完成签到,获得积分10
13秒前
桐桐应助宇宙超人007008采纳,获得10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009979
求助须知:如何正确求助?哪些是违规求助? 3550041
关于积分的说明 11304472
捐赠科研通 3284482
什么是DOI,文献DOI怎么找? 1810684
邀请新用户注册赠送积分活动 886503
科研通“疑难数据库(出版商)”最低求助积分说明 811412