Integration of Spinal Musculoskeletal System Parameters for Predicting OVCF in the Elderly: A Comprehensive Predictive Model

医学 列线图 逻辑回归 一致性 人口 肌萎缩 物理疗法 核医学 内科学 环境卫生
作者
Song Wang,Xin Zhang,Junyong Zheng,Guoliang Chen,Genlong Jiao,Songlin Peng
出处
期刊:Global Spine Journal [SAGE]
被引量:2
标识
DOI:10.1177/21925682241274371
摘要

Study Design Systematic literature review. Objectives To develop a predictive model for osteoporotic vertebral compression fractures (OVCF) in the elderly, utilizing current tools that are sensitive to bone and paraspinal muscle changes. Methods A retrospective analysis of data from 260 patients from October 2020 to December 2022, to form the Model population. This group was split into Training and Testing sets. The Training set aided in creating a nomogram through binary logistic regression. From January 2023 to January 2024, we prospectively collected data from 106 patients to constitute the Validation population. The model’s performance was evaluated using concordance index (C-index), calibration curves, and decision curve analysis (DCA) for both internal and external validation. Results The study included 366 patients. The Training and Testing sets were used for nomogram construction and internal validation, while the prospectively collected data was for external validation. Binary logistic regression identified nine independent OVCF risk factors: age, bone mineral density (BMD), quantitative computed tomography (QCT), vertebral bone quality (VBQ), relative functional cross-sectional area of psoas muscles (rFCSA PS ), gross and functional muscle fat infiltration of multifidus and psoas muscles (GMFI ES+MF and FMFI ES+MF ), FMFI PS , and mean muscle ratio. The nomogram showed an area under the curve (AUC) of 0.91 for the C-index, with internal and external validation AUCs of 0.90 and 0.92. Calibration curves and DCA indicated a good model fit. Conclusions This study identified nine factors as independent predictors of OVCF in the elderly. A nomogram including these factors was developed, proving effective for OVCF prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sdysdbd完成签到 ,获得积分10
刚刚
共享精神应助wsqg123采纳,获得10
刚刚
刚刚
刚刚
芒狗发布了新的文献求助10
刚刚
刚刚
刚刚
1秒前
铁观音发布了新的文献求助10
1秒前
超级李包包关注了科研通微信公众号
1秒前
上官若男应助鲤鱼酸奶采纳,获得10
2秒前
善学以致用应助小巧冷菱采纳,获得50
2秒前
3秒前
3秒前
vane发布了新的文献求助10
3秒前
刘明升发布了新的文献求助10
3秒前
芭温行由发布了新的文献求助10
4秒前
5秒前
活泼学生完成签到,获得积分10
5秒前
安平发布了新的文献求助10
5秒前
思源应助君无邪采纳,获得10
5秒前
这瓜不卖发布了新的文献求助10
5秒前
6秒前
堇瓜完成签到 ,获得积分10
6秒前
6秒前
Vegetable_Dog发布了新的文献求助10
7秒前
7秒前
英姑应助爱撒娇的朋友采纳,获得10
8秒前
俊秀的笑槐发布了新的文献求助100
8秒前
8秒前
8秒前
Suraim完成签到,获得积分10
9秒前
9秒前
Suc完成签到,获得积分10
9秒前
9秒前
ce完成签到,获得积分10
9秒前
化学民工发布了新的文献求助10
10秒前
李健应助Genius采纳,获得10
10秒前
10秒前
小葛发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625702
求助须知:如何正确求助?哪些是违规求助? 4711480
关于积分的说明 14955860
捐赠科研通 4779568
什么是DOI,文献DOI怎么找? 2553797
邀请新用户注册赠送积分活动 1515710
关于科研通互助平台的介绍 1475906