Integration of Spinal Musculoskeletal System Parameters for Predicting OVCF in the Elderly: A Comprehensive Predictive Model

医学 列线图 逻辑回归 一致性 人口 肌萎缩 物理疗法 核医学 内科学 环境卫生
作者
Song Wang,Xin Zhang,Junyong Zheng,Guoliang Chen,Genlong Jiao,Songlin Peng
出处
期刊:Global Spine Journal [SAGE Publishing]
被引量:1
标识
DOI:10.1177/21925682241274371
摘要

Study Design Systematic literature review. Objectives To develop a predictive model for osteoporotic vertebral compression fractures (OVCF) in the elderly, utilizing current tools that are sensitive to bone and paraspinal muscle changes. Methods A retrospective analysis of data from 260 patients from October 2020 to December 2022, to form the Model population. This group was split into Training and Testing sets. The Training set aided in creating a nomogram through binary logistic regression. From January 2023 to January 2024, we prospectively collected data from 106 patients to constitute the Validation population. The model’s performance was evaluated using concordance index (C-index), calibration curves, and decision curve analysis (DCA) for both internal and external validation. Results The study included 366 patients. The Training and Testing sets were used for nomogram construction and internal validation, while the prospectively collected data was for external validation. Binary logistic regression identified nine independent OVCF risk factors: age, bone mineral density (BMD), quantitative computed tomography (QCT), vertebral bone quality (VBQ), relative functional cross-sectional area of psoas muscles (rFCSA PS ), gross and functional muscle fat infiltration of multifidus and psoas muscles (GMFI ES+MF and FMFI ES+MF ), FMFI PS , and mean muscle ratio. The nomogram showed an area under the curve (AUC) of 0.91 for the C-index, with internal and external validation AUCs of 0.90 and 0.92. Calibration curves and DCA indicated a good model fit. Conclusions This study identified nine factors as independent predictors of OVCF in the elderly. A nomogram including these factors was developed, proving effective for OVCF prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
刻苦的平松完成签到 ,获得积分10
1秒前
zbh应助zq1992nl采纳,获得10
1秒前
细胞核发布了新的文献求助10
1秒前
张大婶发布了新的文献求助10
1秒前
徐老师发布了新的文献求助10
1秒前
喜悦兔子完成签到 ,获得积分10
2秒前
2秒前
wang0708完成签到,获得积分10
2秒前
ahua15s发布了新的文献求助10
2秒前
予城完成签到,获得积分20
2秒前
76完成签到,获得积分20
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
sjfczyh发布了新的文献求助10
5秒前
5秒前
忧虑的钻石完成签到,获得积分10
5秒前
科研通AI5应助糟糕的沂采纳,获得10
5秒前
chenyu发布了新的文献求助10
6秒前
千寻发布了新的文献求助10
6秒前
免孑完成签到,获得积分10
6秒前
6秒前
李健的粉丝团团长应助coco采纳,获得10
7秒前
7秒前
will完成签到,获得积分10
8秒前
8秒前
9秒前
闪闪的飞雪完成签到 ,获得积分10
9秒前
快乐无极限完成签到,获得积分10
10秒前
10秒前
imEda完成签到,获得积分10
11秒前
淡然的发带完成签到,获得积分10
11秒前
orixero应助chenchen采纳,获得10
11秒前
segovia_tju发布了新的文献求助10
12秒前
12秒前
邓少龙发布了新的文献求助10
12秒前
12秒前
PePsi完成签到 ,获得积分10
12秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662961
求助须知:如何正确求助?哪些是违规求助? 3223721
关于积分的说明 9752858
捐赠科研通 2933645
什么是DOI,文献DOI怎么找? 1606229
邀请新用户注册赠送积分活动 758325
科研通“疑难数据库(出版商)”最低求助积分说明 734785