Integration of Spinal Musculoskeletal System Parameters for Predicting OVCF in the Elderly: A Comprehensive Predictive Model

医学 列线图 逻辑回归 一致性 人口 肌萎缩 物理疗法 核医学 内科学 环境卫生
作者
Song Wang,Xin Zhang,Junyong Zheng,Guoliang Chen,Genlong Jiao,Songlin Peng
出处
期刊:Global Spine Journal [SAGE]
标识
DOI:10.1177/21925682241274371
摘要

Study Design Systematic literature review. Objectives To develop a predictive model for osteoporotic vertebral compression fractures (OVCF) in the elderly, utilizing current tools that are sensitive to bone and paraspinal muscle changes. Methods A retrospective analysis of data from 260 patients from October 2020 to December 2022, to form the Model population. This group was split into Training and Testing sets. The Training set aided in creating a nomogram through binary logistic regression. From January 2023 to January 2024, we prospectively collected data from 106 patients to constitute the Validation population. The model’s performance was evaluated using concordance index (C-index), calibration curves, and decision curve analysis (DCA) for both internal and external validation. Results The study included 366 patients. The Training and Testing sets were used for nomogram construction and internal validation, while the prospectively collected data was for external validation. Binary logistic regression identified nine independent OVCF risk factors: age, bone mineral density (BMD), quantitative computed tomography (QCT), vertebral bone quality (VBQ), relative functional cross-sectional area of psoas muscles (rFCSA PS ), gross and functional muscle fat infiltration of multifidus and psoas muscles (GMFI ES+MF and FMFI ES+MF ), FMFI PS , and mean muscle ratio. The nomogram showed an area under the curve (AUC) of 0.91 for the C-index, with internal and external validation AUCs of 0.90 and 0.92. Calibration curves and DCA indicated a good model fit. Conclusions This study identified nine factors as independent predictors of OVCF in the elderly. A nomogram including these factors was developed, proving effective for OVCF prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111完成签到,获得积分10
2秒前
4秒前
英勇凡儿发布了新的文献求助10
5秒前
香蕉觅云应助加速度采纳,获得10
7秒前
你爹发布了新的文献求助20
8秒前
10秒前
桐桐应助123456采纳,获得10
10秒前
秋秋发布了新的文献求助10
10秒前
11秒前
一米阳光完成签到,获得积分10
14秒前
16秒前
共享精神应助samifranco采纳,获得10
16秒前
17秒前
CodeCraft应助june采纳,获得10
19秒前
共享精神应助huyang采纳,获得10
19秒前
一叶知秋完成签到 ,获得积分10
20秒前
Pxn1bplus发布了新的文献求助10
20秒前
20秒前
123456发布了新的文献求助10
20秒前
20秒前
从容安波完成签到 ,获得积分10
21秒前
舒心糖豆发布了新的文献求助10
23秒前
山真页完成签到,获得积分10
24秒前
汤鱼发布了新的文献求助10
24秒前
Tink完成签到,获得积分10
25秒前
25秒前
张三发布了新的文献求助10
26秒前
摘星012完成签到 ,获得积分10
27秒前
尖果儿发布了新的文献求助10
27秒前
可爱的函函应助奇异物质采纳,获得10
27秒前
30秒前
30秒前
june完成签到,获得积分10
31秒前
你爹完成签到,获得积分10
31秒前
整齐芷文完成签到,获得积分10
33秒前
orixero应助璇儿采纳,获得10
33秒前
汉堡包应助ZYC采纳,获得10
34秒前
35秒前
36秒前
Yuxuan发布了新的文献求助10
36秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135027
求助须知:如何正确求助?哪些是违规求助? 2785983
关于积分的说明 7774640
捐赠科研通 2441787
什么是DOI,文献DOI怎么找? 1298184
科研通“疑难数据库(出版商)”最低求助积分说明 625088
版权声明 600825