Active Learning Guided Discovery of High Entropy Oxides Featuring High H2-production

化学
作者
Siyang Nie,Yan Xiang,Liang Wu,Guang Lin,Qingda Liu,Shengqi Chu,Xun Wang
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:146 (43): 29325-29334 被引量:3
标识
DOI:10.1021/jacs.4c06272
摘要

High entropy oxides (HEOs) represent a class of solid solutions comprising multiple elements, offering significant scientific potential. Due to the enormous combination types of elements, the design of HEOs with desirable properties within high-dimensional composition spaces has traditionally relied heavily on knowledge and intuition. In this study, we present an active learning (AL) strategy tailored to efficiently explore the vast compositional space of HEOs. Our approach operates as a closed-loop system, iteratively cycling through "Training, Prediction, and Experiment" stages. Across multiple AL iterations, we have successfully identified four novel HEOs from a vast array of potential compositions. These newly discovered materials exhibit exceptional stability and demonstrate outstanding performance in H2 evolution rate (251 μmol gcat–1 min–1) during the water–gas shift reaction, surpassing benchmarks set by established catalysts such as Pt/γ–Al2O3 (135 μmol gcat–1 min–1) and Cu/ZnO/Al2O3 (81 μmol gcat–1 min–1). X-ray photoelectron spectroscopy and density functional theory calculations revealed a loss of elemental identity in the selected HEOs. This catalyst discovery process underscores the efficacy of Machine Learning in accelerating the identification of HEOs with unique characteristics by effectively leveraging insights from limited experimental data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ousa完成签到,获得积分10
刚刚
1秒前
寒hep完成签到,获得积分10
1秒前
脑洞疼应助Lich采纳,获得10
1秒前
科研大笨蛋完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
3秒前
Zirong发布了新的文献求助10
3秒前
jianjian完成签到,获得积分10
4秒前
梨花酒完成签到,获得积分10
5秒前
SciGPT应助酱紫采纳,获得10
5秒前
5秒前
天天完成签到,获得积分10
6秒前
科研通AI2S应助小宋采纳,获得10
6秒前
wanz完成签到,获得积分10
6秒前
7秒前
Lcrainy完成签到,获得积分10
8秒前
爱大美完成签到,获得积分10
8秒前
9秒前
Cxyyyl完成签到,获得积分10
9秒前
lili完成签到 ,获得积分10
9秒前
幸福时光给朝夕的求助进行了留言
9秒前
和谐的映秋应助刘佳明采纳,获得10
9秒前
kokoro完成签到 ,获得积分10
10秒前
心绿新绿发布了新的文献求助10
10秒前
10秒前
10秒前
冷静的夏山完成签到,获得积分10
10秒前
微笑向卉发布了新的文献求助10
10秒前
yuu头完成签到,获得积分10
11秒前
完美世界应助会飞的野马采纳,获得30
11秒前
阳台的小熊完成签到,获得积分10
11秒前
Liu_cx完成签到,获得积分10
11秒前
12秒前
苽峰完成签到,获得积分10
12秒前
油炸小麻花应助满意水瑶采纳,获得20
12秒前
yfw发布了新的文献求助10
13秒前
smrsmr完成签到,获得积分10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950291
求助须知:如何正确求助?哪些是违规求助? 3495773
关于积分的说明 11078786
捐赠科研通 3226217
什么是DOI,文献DOI怎么找? 1783653
邀请新用户注册赠送积分活动 867728
科研通“疑难数据库(出版商)”最低求助积分说明 800904