A multimodal cross-transformer-based model to predict mild cognitive impairment using speech, language and vision

变压器 计算机科学 认知障碍 语音识别 认知 人工智能 机器学习 心理学 工程类 神经科学 电压 电气工程
作者
Farida Far Poor,Hiroko H. Dodge,Mohammad H. Mahoor
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:182: 109199-109199
标识
DOI:10.1016/j.compbiomed.2024.109199
摘要

Mild Cognitive Impairment (MCI) is an early stage of memory loss or other cognitive ability loss in individuals who maintain the ability to independently perform most activities of daily living. It is considered a transitional stage between normal cognitive stage and more severe cognitive declines like dementia or Alzheimer's. Based on the reports from the National Institute of Aging (NIA), people with MCI are at a greater risk of developing dementia, thus it is of great importance to detect MCI at the earliest possible to mitigate the transformation of MCI to Alzheimer's and dementia. Recent studies have harnessed Artificial Intelligence (AI) to develop automated methods to predict and detect MCI. The majority of the existing research is based on unimodal data (e.g., only speech or prosody), but recent studies have shown that multimodality leads to a more accurate prediction of MCI. However, effectively exploiting different modalities is still a big challenge due to the lack of efficient fusion methods. This study proposes a robust fusion architecture utilizing an embedding-level fusion via a co-attention mechanism to leverage multimodal data for MCI prediction. This approach addresses the limitations of early and late fusion methods, which often fail to preserve inter-modal relationships. Our embedding-level fusion aims to capture complementary information across modalities, enhancing predictive accuracy. We used the I-CONECT dataset, where a large number of semi-structured conversations via internet/webcam between participants aged 75+ years old and interviewers were recorded. We introduce a multimodal speech-language-vision Deep Learning-based method to differentiate MCI from Normal Cognition (NC). Our proposed architecture includes co-attention blocks to fuse three different modalities at the embedding level to find the potential interactions between speech (audio), language (transcribed speech), and vision (facial videos) within the cross-Transformer layer. Experimental results demonstrate that our fusion method achieves an average AUC of 85.3% in detecting MCI from NC, significantly outperforming unimodal (60.9%) and bimodal (76.3%) baseline models. This superior performance highlights the effectiveness of our model in capturing and utilizing the complementary information from multiple modalities, offering a more accurate and reliable approach for MCI prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
矮小的长颈鹿完成签到,获得积分10
刚刚
乐多发布了新的文献求助10
刚刚
shouying发布了新的文献求助10
2秒前
hyl发布了新的文献求助10
3秒前
妮妮发布了新的文献求助20
3秒前
arneyda发布了新的文献求助10
3秒前
小绾完成签到,获得积分10
4秒前
叫我陈老师啊完成签到,获得积分10
4秒前
桐桐应助zy3637采纳,获得10
4秒前
Q甜完成签到,获得积分10
5秒前
HHH发布了新的文献求助10
5秒前
薛言完成签到,获得积分10
5秒前
Biyanchao应助lxl98采纳,获得10
7秒前
lxl1996完成签到,获得积分10
8秒前
隐形曼青应助郝出站采纳,获得30
8秒前
KDC发布了新的文献求助20
8秒前
8秒前
9秒前
华仔应助hyl采纳,获得10
9秒前
大个应助乐多采纳,获得10
10秒前
兴奋的定帮应助banbieshenlu采纳,获得10
10秒前
小陈爱科研完成签到,获得积分10
11秒前
研友_VZG7GZ应助努力努力采纳,获得10
13秒前
13秒前
小熊完成签到,获得积分10
13秒前
14秒前
Ava应助英勇的钢铁侠采纳,获得10
14秒前
常琳琳发布了新的文献求助10
14秒前
14秒前
雪山飞鹰完成签到,获得积分10
15秒前
南滨完成签到 ,获得积分10
16秒前
KDC完成签到,获得积分10
16秒前
还单身的夜云完成签到,获得积分10
16秒前
Kris完成签到,获得积分20
16秒前
小蘑菇应助怡然的芯采纳,获得10
17秒前
kexi7发布了新的文献求助10
17秒前
雪山飞鹰发布了新的文献求助10
17秒前
18秒前
19秒前
hometown发布了新的文献求助10
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952180
求助须知:如何正确求助?哪些是违规求助? 3497683
关于积分的说明 11088472
捐赠科研通 3228269
什么是DOI,文献DOI怎么找? 1784720
邀请新用户注册赠送积分活动 868875
科研通“疑难数据库(出版商)”最低求助积分说明 801281