A multimodal cross-transformer-based model to predict mild cognitive impairment using speech, language and vision

变压器 计算机科学 认知障碍 语音识别 认知 人工智能 机器学习 心理学 工程类 神经科学 电压 电气工程
作者
Farida Far Poor,Hiroko H. Dodge,Mohammad H. Mahoor
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:182: 109199-109199
标识
DOI:10.1016/j.compbiomed.2024.109199
摘要

Mild Cognitive Impairment (MCI) is an early stage of memory loss or other cognitive ability loss in individuals who maintain the ability to independently perform most activities of daily living. It is considered a transitional stage between normal cognitive stage and more severe cognitive declines like dementia or Alzheimer's. Based on the reports from the National Institute of Aging (NIA), people with MCI are at a greater risk of developing dementia, thus it is of great importance to detect MCI at the earliest possible to mitigate the transformation of MCI to Alzheimer's and dementia. Recent studies have harnessed Artificial Intelligence (AI) to develop automated methods to predict and detect MCI. The majority of the existing research is based on unimodal data (e.g., only speech or prosody), but recent studies have shown that multimodality leads to a more accurate prediction of MCI. However, effectively exploiting different modalities is still a big challenge due to the lack of efficient fusion methods. This study proposes a robust fusion architecture utilizing an embedding-level fusion via a co-attention mechanism to leverage multimodal data for MCI prediction. This approach addresses the limitations of early and late fusion methods, which often fail to preserve inter-modal relationships. Our embedding-level fusion aims to capture complementary information across modalities, enhancing predictive accuracy. We used the I-CONECT dataset, where a large number of semi-structured conversations via internet/webcam between participants aged 75+ years old and interviewers were recorded. We introduce a multimodal speech-language-vision Deep Learning-based method to differentiate MCI from Normal Cognition (NC). Our proposed architecture includes co-attention blocks to fuse three different modalities at the embedding level to find the potential interactions between speech (audio), language (transcribed speech), and vision (facial videos) within the cross-Transformer layer. Experimental results demonstrate that our fusion method achieves an average AUC of 85.3% in detecting MCI from NC, significantly outperforming unimodal (60.9%) and bimodal (76.3%) baseline models. This superior performance highlights the effectiveness of our model in capturing and utilizing the complementary information from multiple modalities, offering a more accurate and reliable approach for MCI prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
明亮访烟完成签到,获得积分10
刚刚
刚刚
传奇3应助eeeee采纳,获得10
1秒前
小二郎应助暴躁的问兰采纳,获得10
2秒前
大模型应助踏实的寒安采纳,获得10
3秒前
3秒前
爆米花应助wali采纳,获得10
3秒前
4秒前
傲娇蜻蜓完成签到,获得积分10
4秒前
jiusi完成签到,获得积分20
4秒前
4秒前
情怀应助愉快的千柳采纳,获得10
5秒前
潇湘学术完成签到,获得积分10
6秒前
9秒前
jiusi发布了新的文献求助10
9秒前
10秒前
小二郎应助王太白采纳,获得20
11秒前
13秒前
笑一笑完成签到,获得积分10
13秒前
13秒前
13秒前
懵懂的蘑菇完成签到 ,获得积分10
13秒前
14秒前
龚佳豪完成签到,获得积分10
14秒前
eeeee发布了新的文献求助10
15秒前
木子niko完成签到,获得积分10
16秒前
17秒前
龚佳豪发布了新的文献求助10
17秒前
斯文败类应助jiusi采纳,获得10
17秒前
18秒前
18秒前
19秒前
ggplot2发布了新的文献求助10
19秒前
20秒前
21秒前
21秒前
我是老大应助体贴的靖仇采纳,获得10
21秒前
21秒前
22秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138230
求助须知:如何正确求助?哪些是违规求助? 2789160
关于积分的说明 7790351
捐赠科研通 2445545
什么是DOI,文献DOI怎么找? 1300521
科研通“疑难数据库(出版商)”最低求助积分说明 625925
版权声明 601046