A new filled function method for solving constrained global optimization problems

数学 数学优化 功能(生物学) 全局优化 约束优化问题 约束优化 最优化问题 应用数学 牙石(牙科) 医学 进化生物学 生物 牙科
作者
Yuelin Gao,Hongwei Lin,Minmin Li,Lili Yang
出处
期刊:Optimization [Taylor & Francis]
卷期号:: 1-22
标识
DOI:10.1080/02331934.2024.2390118
摘要

Filled function methods have been considered as effective algorithms for solving global optimization problems. However, their effectiveness is greatly affected by the selection of parameters, the noncontinuous or non-differentiable properties of the constructed filled function. In addition, many of the constructed filled functions are only for unconstrained optimization problems, and they are unable to solve constrained optimization problems. In this paper, a new filled function is constructed for solving constrained global optimization problems. The new filled function has only one parameter which needs to be adjusted, and, when the objective functions and constrained functions are all continuously differentiable functions, the constructed filled function is also a continuously differentiable function. Then, the classical local optimization methods can be used to find a better minimum of the proposed filled function and a few parameter adjustments are needed. At last, a new filled function algorithm for constrained global optimization is developed based on the proposed filled function. The new algorithm is applied to several test examples. The results of the numerical experiments show that the new filled function algorithm is effective and efficient.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
应见惯发布了新的文献求助10
刚刚
1秒前
TTT发布了新的文献求助10
1秒前
JamesPei应助海风采纳,获得10
2秒前
2秒前
1111111发布了新的文献求助10
2秒前
有话好好硕完成签到 ,获得积分10
3秒前
张健发布了新的文献求助10
4秒前
mic发布了新的文献求助10
5秒前
5秒前
丘比特应助Du采纳,获得10
6秒前
6秒前
6秒前
英俊的铭应助小威廉采纳,获得10
7秒前
janice完成签到,获得积分10
7秒前
8秒前
量子星尘发布了新的文献求助50
9秒前
Owen应助dw采纳,获得50
9秒前
dll发布了新的文献求助10
9秒前
LUNIX发布了新的文献求助10
9秒前
惠JUI发布了新的文献求助10
10秒前
tuwan发布了新的文献求助10
11秒前
Xuwen发布了新的文献求助10
11秒前
一路直博完成签到,获得积分10
12秒前
13秒前
充电宝应助贪玩蔡徐坤采纳,获得10
14秒前
华仔应助外向若剑采纳,获得10
16秒前
17秒前
18秒前
留胡子的迎梦完成签到 ,获得积分10
19秒前
19秒前
ll发布了新的文献求助10
19秒前
ljq发布了新的文献求助10
19秒前
20秒前
22秒前
万能图书馆应助ll采纳,获得10
23秒前
量子星尘发布了新的文献求助10
23秒前
24秒前
Owen应助董劭晗采纳,获得10
25秒前
一路直博发布了新的文献求助20
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4886348
求助须知:如何正确求助?哪些是违规求助? 4171310
关于积分的说明 12944605
捐赠科研通 3931793
什么是DOI,文献DOI怎么找? 2157251
邀请新用户注册赠送积分活动 1175706
关于科研通互助平台的介绍 1080197