A combination model of CT-based radiomics and clinical biomarkers for staging liver fibrosis in the patients with chronic liver disease

医学 肝硬化 肝活检 放射科 接收机工作特性 内科学 逻辑回归 纤维化 慢性肝病 肝病 放射基因组学 阶段(地层学) 无线电技术 队列 胃肠病学 活检 古生物学 生物
作者
Maowen Tang,Yuhui Wu,Na Hu,Chong Lin,Jian He,Xing Xia,Meihua Yang,Pinggui Lei,Peng Luo
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1) 被引量:1
标识
DOI:10.1038/s41598-024-70891-9
摘要

A combined model was developed using contrast-enhanced CT-based radiomics features and clinical characteristics to predict liver fibrosis stages in patients with chronic liver disease (CLD). We retrospectively analyzed multiphase CT scans and biopsy-confirmed liver fibrosis. 160 CLD patients were randomly divided into 7:3 training/validation ratio. Clinical laboratory indicators associated with liver fibrosis were identified using Spearman's correlation and multivariate logistic regression correlation. Radiomic features were extracted after segmenting the entire liver from multiphase CT images. Feature dimensionality reduction was performed using RF-RFE, LASSO, and mRMR methods. Six radiomics-based models were developed in the training cohort of 112 patients. Internal validation was conducted on 48 randomly assigned patients. Receptor Operating Characteristic (ROC) curves and confusion matrices were constructed to evaluate model performance. The radiomics model exhibited robust performance, with AUC values of 0.810 to 1.000 for significant fibrosis, advanced fibrosis, and cirrhosis. The integrated clinical-radiomics model had superior diagnostic efficacy in the validation cohort, with AUC values of 0.836 to 0.997. Moreover, these models outperformed established biomarkers such as the aspartate aminotransferase to platelet ratio index (APRI) and the fibrosis 4 score (FIB-4), as well as the gamma glutamyl transpeptidase to platelet ratio (GPR), in predicting the fibrotic stages. The clinical-radiomics model holds considerable promise as a non-invasive diagnostic tool for the assessment and staging of liver fibrosis in the patients with CLD, potentially leading to better patient management and outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
深情安青应助keyanxiaobaishu采纳,获得10
1秒前
inter发布了新的文献求助10
2秒前
SnownS发布了新的文献求助20
5秒前
6秒前
orixero应助杰果采纳,获得10
7秒前
11秒前
12秒前
bkagyin应助蓝莓西西果冻采纳,获得10
12秒前
Jodie发布了新的文献求助10
13秒前
机灵冥发布了新的文献求助10
13秒前
慕青应助朴素的松采纳,获得10
15秒前
加百莉发布了新的文献求助10
17秒前
Fitz完成签到,获得积分10
18秒前
王美美发布了新的文献求助10
22秒前
科研通AI6应助good采纳,获得10
23秒前
科研通AI6应助小巧的蓝血采纳,获得30
24秒前
尔玉完成签到 ,获得积分10
26秒前
科研通AI6应助华杰采纳,获得10
29秒前
呜呜完成签到 ,获得积分10
35秒前
欢喜的代容完成签到,获得积分10
35秒前
华仔应助动听的涵山采纳,获得10
35秒前
37秒前
孙乐777完成签到,获得积分10
39秒前
田様应助echo采纳,获得10
39秒前
王美美发布了新的文献求助10
41秒前
41秒前
小化化爱学习完成签到,获得积分10
42秒前
44秒前
隐形曼青应助阔达的嵩采纳,获得10
45秒前
科研通AI6应助echo采纳,获得10
47秒前
孙乐777发布了新的文献求助10
48秒前
嘻嘻哈哈完成签到,获得积分10
49秒前
柔弱翎完成签到,获得积分10
51秒前
留胡子的火完成签到,获得积分10
52秒前
斯文败类应助王美美采纳,获得10
54秒前
小蘑菇应助echo采纳,获得10
55秒前
小水完成签到,获得积分10
58秒前
Jasper应助tree采纳,获得10
1分钟前
galaxy完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557705
求助须知:如何正确求助?哪些是违规求助? 4642797
关于积分的说明 14669110
捐赠科研通 4584209
什么是DOI,文献DOI怎么找? 2514668
邀请新用户注册赠送积分活动 1488870
关于科研通互助平台的介绍 1459550