A combination model of CT-based radiomics and clinical biomarkers for staging liver fibrosis in the patients with chronic liver disease

医学 肝硬化 肝活检 放射科 接收机工作特性 内科学 逻辑回归 纤维化 慢性肝病 肝病 放射基因组学 阶段(地层学) 无线电技术 队列 胃肠病学 活检 古生物学 生物
作者
Maowen Tang,Yuhui Wu,Na Hu,Chong Lin,Jian He,Xing Xia,Meihua Yang,Pinggui Lei,Peng Luo
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1) 被引量:1
标识
DOI:10.1038/s41598-024-70891-9
摘要

A combined model was developed using contrast-enhanced CT-based radiomics features and clinical characteristics to predict liver fibrosis stages in patients with chronic liver disease (CLD). We retrospectively analyzed multiphase CT scans and biopsy-confirmed liver fibrosis. 160 CLD patients were randomly divided into 7:3 training/validation ratio. Clinical laboratory indicators associated with liver fibrosis were identified using Spearman's correlation and multivariate logistic regression correlation. Radiomic features were extracted after segmenting the entire liver from multiphase CT images. Feature dimensionality reduction was performed using RF-RFE, LASSO, and mRMR methods. Six radiomics-based models were developed in the training cohort of 112 patients. Internal validation was conducted on 48 randomly assigned patients. Receptor Operating Characteristic (ROC) curves and confusion matrices were constructed to evaluate model performance. The radiomics model exhibited robust performance, with AUC values of 0.810 to 1.000 for significant fibrosis, advanced fibrosis, and cirrhosis. The integrated clinical-radiomics model had superior diagnostic efficacy in the validation cohort, with AUC values of 0.836 to 0.997. Moreover, these models outperformed established biomarkers such as the aspartate aminotransferase to platelet ratio index (APRI) and the fibrosis 4 score (FIB-4), as well as the gamma glutamyl transpeptidase to platelet ratio (GPR), in predicting the fibrotic stages. The clinical-radiomics model holds considerable promise as a non-invasive diagnostic tool for the assessment and staging of liver fibrosis in the patients with CLD, potentially leading to better patient management and outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
习习发布了新的文献求助10
1秒前
1秒前
wanci应助drizzling采纳,获得10
1秒前
r93527005完成签到,获得积分10
1秒前
2秒前
霸气谷蕊完成签到 ,获得积分10
4秒前
羊羊羊完成签到,获得积分10
4秒前
4秒前
5秒前
科研通AI5应助WNL采纳,获得10
5秒前
Xuu完成签到,获得积分10
5秒前
外向的沅发布了新的文献求助10
5秒前
徐慕源发布了新的文献求助10
5秒前
夏哈哈完成签到 ,获得积分10
6秒前
默默海露完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
8秒前
迷路安阳发布了新的文献求助10
8秒前
8秒前
NexusExplorer应助Jolene66采纳,获得10
8秒前
医路有你完成签到,获得积分10
8秒前
9秒前
科研通AI5应助Sean采纳,获得10
9秒前
9秒前
超帅连虎完成签到,获得积分10
9秒前
皓月千里发布了新的文献求助10
9秒前
Grayball应助包容的剑采纳,获得10
9秒前
深情安青应助寒冷书竹采纳,获得10
10秒前
wbj0722完成签到,获得积分10
10秒前
JIAO完成签到,获得积分10
10秒前
10秒前
11秒前
852应助HopeStar采纳,获得10
11秒前
圆圆发布了新的文献求助30
12秒前
Orange应助Promise采纳,获得10
12秒前
一直发布了新的文献求助20
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678