4D flow MRI velocity uncertainty quantification

流量(数学) 公制(单位) 流速 数学 噪音(视频) 统计 生物医学工程 计算机科学 医学 人工智能 运营管理 几何学 经济 图像(数学)
作者
Sean Rothenberger,Jiacheng Zhang,Michael Markl,Bruce Α. Craig,Pavlos P. Vlachos,Vitaliy L. Rayz
出处
期刊:Magnetic Resonance in Medicine [Wiley]
标识
DOI:10.1002/mrm.30287
摘要

Abstract Purpose An automatic method is presented for estimating 4D flow MRI velocity measurement uncertainty in each voxel. The velocity distance (VD) metric, a statistical distance between the measured velocity and local error distribution, is introduced as a novel measure of 4D flow MRI velocity measurement quality. Methods The method uses mass conservation to assess the local velocity error variance and the standardized difference of means (SDM) velocity to estimate the velocity error correlations. VD is evaluated as the Mahalanobis distance between the local velocity measurement and the local error distribution. The uncertainty model is validated synthetically and tested in vitro under different flow resolutions and noise levels. The VD's application is demonstrated on two in vivo thoracic vasculature 4D flow datasets. Results Synthetic results show the proposed uncertainty quantification method is sensitive to aliased regions across various velocity‐to‐noise ratios and assesses velocity error correlations in four‐ and six‐point acquisitions with correlation errors at or under 3.2%. In vitro results demonstrate the method's sensitivity to spatial resolution, venc settings, partial volume effects, and phase wrapping error sources. Applying VD to assess in vivo 4D flow MRI in the aorta demonstrates the expected increase in measured velocity quality with contrast administration and systolic flow. Conclusion The proposed 4D flow MRI uncertainty quantification method assesses velocity measurement error owing to sources including noise, intravoxel phase dispersion, and velocity aliasing. This method enables rigorous comparison of 4D flow MRI datasets obtained in longitudinal studies, across patient populations, and with different MRI systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小熊应助高兴吐司采纳,获得10
刚刚
研友_Z3NGvn发布了新的文献求助30
刚刚
1秒前
科研螺丝发布了新的文献求助10
1秒前
1秒前
AllOfMe完成签到 ,获得积分20
1秒前
el发布了新的文献求助10
1秒前
2秒前
2秒前
星辰大海应助JJJ采纳,获得10
3秒前
3秒前
3秒前
4秒前
流年羽完成签到,获得积分20
4秒前
可爱的函函应助海鹰采纳,获得10
4秒前
NN发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
7秒前
7秒前
香蕉觅云应助JFyang2025采纳,获得10
7秒前
洁净的惜筠完成签到,获得积分20
8秒前
Murphy~发布了新的文献求助30
8秒前
8秒前
kankanli关注了科研通微信公众号
8秒前
佟碧玉发布了新的文献求助10
9秒前
serafinaX发布了新的文献求助10
9秒前
9秒前
10秒前
Raydiaz发布了新的文献求助10
10秒前
科研通AI2S应助hh采纳,获得10
10秒前
NN完成签到 ,获得积分10
11秒前
xiaohuang发布了新的文献求助10
11秒前
11发布了新的文献求助10
11秒前
小马甲应助雾海采纳,获得10
12秒前
Lialia发布了新的文献求助10
12秒前
汉堡包应助刚刚好采纳,获得10
13秒前
ljh发布了新的文献求助10
13秒前
Singularity应助1221采纳,获得10
14秒前
高分求助中
Sustainability in ’Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3075498
求助须知:如何正确求助?哪些是违规求助? 2728589
关于积分的说明 7505148
捐赠科研通 2376734
什么是DOI,文献DOI怎么找? 1260264
科研通“疑难数据库(出版商)”最低求助积分说明 610928
版权声明 597149