Anatomy-specific Progression Classification in Chest Radiographs via Weakly Supervised Learning

射线照相术 医学 放射科 解剖 医学物理学 人工智能 计算机科学
作者
Ke Yu,Shantanu Ghosh,Zhexiong Liu,Christopher Deible,Clare B. Poynton,Kayhan Batmanghelich
出处
期刊:Radiology [Radiological Society of North America]
卷期号:6 (5) 被引量:1
标识
DOI:10.1148/ryai.230277
摘要

Purpose To develop a machine learning approach for classifying disease progression in chest radiographs using weak labels automatically derived from radiology reports. Materials and Methods In this retrospective study, a twin neural network was developed to classify anatomy-specific disease progression into four categories: improved, unchanged, worsened, and new. A two-step weakly supervised learning approach was employed, pretraining the model on 243 008 frontal chest radiographs from 63 877 patients (mean age, 51.7 years ± 17.0 [SD]; 34 813 [55%] female) included in the MIMIC-CXR database and fine-tuning it on the subset with progression labels derived from consecutive studies. Model performance was evaluated for six pathologic observations on test datasets of unseen patients from the MIMIC-CXR database. Area under the receiver operating characteristic (AUC) analysis was used to evaluate classification performance. The algorithm is also capable of generating bounding-box predictions to localize areas of new progression. Recall, precision, and mean average precision were used to evaluate the new progression localization. One-tailed paired t tests were used to assess statistical significance. Results The model outperformed most baselines in progression classification, achieving macro AUC scores of 0.72 ± 0.004 for atelectasis, 0.75 ± 0.007 for consolidation, 0.76 ± 0.017 for edema, 0.81 ± 0.006 for effusion, 0.7 ± 0.032 for pneumonia, and 0.69 ± 0.01 for pneumothorax. For new observation localization, the model achieved mean average precision scores of 0.25 ± 0.03 for atelectasis, 0.34 ± 0.03 for consolidation, 0.33 ± 0.03 for edema, and 0.31 ± 0.03 for pneumothorax. Conclusion Disease progression classification models were developed on a large chest radiograph dataset, which can be used to monitor interval changes and detect new pathologic conditions on chest radiographs. Keywords: Prognosis, Unsupervised Learning, Transfer Learning, Convolutional Neural Network (CNN), Emergency Radiology, Named Entity Recognition Supplemental material is available for this article. © RSNA, 2024 See also commentary by Alves and Venkadesh in this issue.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
dong应助Yuelong采纳,获得10
5秒前
bingsu108完成签到,获得积分10
6秒前
小岚花发布了新的文献求助10
8秒前
CodeCraft应助凉茶采纳,获得10
8秒前
脑洞疼应助YZQ采纳,获得10
9秒前
琳琳完成签到,获得积分10
9秒前
华仔应助俏皮的白柏采纳,获得10
10秒前
羊洋洋完成签到,获得积分20
10秒前
最爱地瓜和虾滑完成签到 ,获得积分10
12秒前
yar给聪慧的草丛的求助进行了留言
12秒前
奋斗雁山发布了新的文献求助10
12秒前
13秒前
查到文献了吗完成签到,获得积分10
13秒前
FashionBoy应助Lee采纳,获得10
13秒前
Elvira完成签到,获得积分10
13秒前
15秒前
17秒前
易酰水烊酸应助Onism采纳,获得10
17秒前
青岚完成签到 ,获得积分10
17秒前
18秒前
tay发布了新的文献求助10
19秒前
20秒前
pluto应助一直小虾米采纳,获得10
20秒前
双楠应助不想采纳,获得10
22秒前
23秒前
Luobing完成签到,获得积分10
24秒前
研友_LXjjOZ完成签到,获得积分10
24秒前
上官若男应助蔚蓝的天空采纳,获得10
25秒前
slr完成签到,获得积分10
25秒前
逆境发布了新的文献求助10
25秒前
26秒前
草莓布丁发布了新的文献求助80
27秒前
凉茶发布了新的文献求助10
28秒前
28秒前
30秒前
30秒前
30秒前
30秒前
yyyq发布了新的文献求助10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988838
求助须知:如何正确求助?哪些是违规求助? 3531250
关于积分的说明 11252914
捐赠科研通 3269838
什么是DOI,文献DOI怎么找? 1804820
邀请新用户注册赠送积分活动 881943
科研通“疑难数据库(出版商)”最低求助积分说明 809028