亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Anatomy-specific Progression Classification in Chest Radiographs via Weakly Supervised Learning

射线照相术 医学 放射科 解剖 医学物理学 人工智能 计算机科学
作者
Ke Yu,Shantanu Ghosh,Zhexiong Liu,Christopher Deible,Clare B. Poynton,Kayhan Batmanghelich
出处
期刊:Radiology [Radiological Society of North America]
卷期号:6 (5) 被引量:1
标识
DOI:10.1148/ryai.230277
摘要

Purpose To develop a machine learning approach for classifying disease progression in chest radiographs using weak labels automatically derived from radiology reports. Materials and Methods In this retrospective study, a twin neural network was developed to classify anatomy-specific disease progression into four categories: improved, unchanged, worsened, and new. A two-step weakly supervised learning approach was employed, pretraining the model on 243 008 frontal chest radiographs from 63 877 patients (mean age, 51.7 years ± 17.0 [SD]; 34 813 [55%] female) included in the MIMIC-CXR database and fine-tuning it on the subset with progression labels derived from consecutive studies. Model performance was evaluated for six pathologic observations on test datasets of unseen patients from the MIMIC-CXR database. Area under the receiver operating characteristic (AUC) analysis was used to evaluate classification performance. The algorithm is also capable of generating bounding-box predictions to localize areas of new progression. Recall, precision, and mean average precision were used to evaluate the new progression localization. One-tailed paired t tests were used to assess statistical significance. Results The model outperformed most baselines in progression classification, achieving macro AUC scores of 0.72 ± 0.004 for atelectasis, 0.75 ± 0.007 for consolidation, 0.76 ± 0.017 for edema, 0.81 ± 0.006 for effusion, 0.7 ± 0.032 for pneumonia, and 0.69 ± 0.01 for pneumothorax. For new observation localization, the model achieved mean average precision scores of 0.25 ± 0.03 for atelectasis, 0.34 ± 0.03 for consolidation, 0.33 ± 0.03 for edema, and 0.31 ± 0.03 for pneumothorax. Conclusion Disease progression classification models were developed on a large chest radiograph dataset, which can be used to monitor interval changes and detect new pathologic conditions on chest radiographs. Keywords: Prognosis, Unsupervised Learning, Transfer Learning, Convolutional Neural Network (CNN), Emergency Radiology, Named Entity Recognition Supplemental material is available for this article. © RSNA, 2024 See also commentary by Alves and Venkadesh in this issue.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
alaa发布了新的文献求助10
6秒前
7秒前
可爱的函函应助小马采纳,获得10
8秒前
面影如春完成签到,获得积分10
8秒前
慕青应助田子廉采纳,获得10
11秒前
bbhk完成签到,获得积分10
14秒前
16秒前
19秒前
小马发布了新的文献求助10
26秒前
alaa完成签到,获得积分20
30秒前
hll发布了新的文献求助10
32秒前
34秒前
36秒前
付津顺发布了新的文献求助10
40秒前
Hello应助guyutang采纳,获得10
43秒前
Twistti完成签到,获得积分10
44秒前
谐音梗别扣钱完成签到 ,获得积分10
45秒前
Zoe完成签到 ,获得积分10
50秒前
51秒前
大个应助小马采纳,获得10
51秒前
付津顺完成签到,获得积分10
52秒前
大帅哥完成签到 ,获得积分10
53秒前
zhongbo发布了新的文献求助10
55秒前
55秒前
57秒前
小马发布了新的文献求助10
1分钟前
1分钟前
科研通AI6应助hll采纳,获得10
1分钟前
芝士奶盖有点咸完成签到 ,获得积分10
1分钟前
1分钟前
田子廉发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Ava应助田子廉采纳,获得10
1分钟前
科研通AI6应助ccccc采纳,获得10
1分钟前
1分钟前
minhdh完成签到,获得积分10
1分钟前
ljy完成签到,获得积分10
1分钟前
guyutang发布了新的文献求助10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5564848
求助须知:如何正确求助?哪些是违规求助? 4649537
关于积分的说明 14689066
捐赠科研通 4591517
什么是DOI,文献DOI怎么找? 2519183
邀请新用户注册赠送积分活动 1491843
关于科研通互助平台的介绍 1462872