Anatomy-specific Progression Classification in Chest Radiographs via Weakly Supervised Learning

射线照相术 医学 放射科 解剖 医学物理学 人工智能 计算机科学
作者
Ke Yu,Shantanu Ghosh,Zhexiong Liu,Christopher Deible,Clare B. Poynton,Kayhan Batmanghelich
出处
期刊:Radiology [Radiological Society of North America]
卷期号:6 (5) 被引量:1
标识
DOI:10.1148/ryai.230277
摘要

Purpose To develop a machine learning approach for classifying disease progression in chest radiographs using weak labels automatically derived from radiology reports. Materials and Methods In this retrospective study, a twin neural network was developed to classify anatomy-specific disease progression into four categories: improved, unchanged, worsened, and new. A two-step weakly supervised learning approach was employed, pretraining the model on 243 008 frontal chest radiographs from 63 877 patients (mean age, 51.7 years ± 17.0 [SD]; 34 813 [55%] female) included in the MIMIC-CXR database and fine-tuning it on the subset with progression labels derived from consecutive studies. Model performance was evaluated for six pathologic observations on test datasets of unseen patients from the MIMIC-CXR database. Area under the receiver operating characteristic (AUC) analysis was used to evaluate classification performance. The algorithm is also capable of generating bounding-box predictions to localize areas of new progression. Recall, precision, and mean average precision were used to evaluate the new progression localization. One-tailed paired t tests were used to assess statistical significance. Results The model outperformed most baselines in progression classification, achieving macro AUC scores of 0.72 ± 0.004 for atelectasis, 0.75 ± 0.007 for consolidation, 0.76 ± 0.017 for edema, 0.81 ± 0.006 for effusion, 0.7 ± 0.032 for pneumonia, and 0.69 ± 0.01 for pneumothorax. For new observation localization, the model achieved mean average precision scores of 0.25 ± 0.03 for atelectasis, 0.34 ± 0.03 for consolidation, 0.33 ± 0.03 for edema, and 0.31 ± 0.03 for pneumothorax. Conclusion Disease progression classification models were developed on a large chest radiograph dataset, which can be used to monitor interval changes and detect new pathologic conditions on chest radiographs. Keywords: Prognosis, Unsupervised Learning, Transfer Learning, Convolutional Neural Network (CNN), Emergency Radiology, Named Entity Recognition Supplemental material is available for this article. © RSNA, 2024 See also commentary by Alves and Venkadesh in this issue.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助WWW采纳,获得10
刚刚
蚊蚊爱读书应助yy采纳,获得10
刚刚
mwx发布了新的文献求助10
1秒前
Airo发布了新的文献求助30
1秒前
1秒前
BK发布了新的文献求助10
1秒前
1秒前
fff完成签到,获得积分10
2秒前
159完成签到,获得积分10
3秒前
Levy发布了新的文献求助10
3秒前
pineapple yang完成签到,获得积分10
3秒前
3秒前
4秒前
dax发布了新的文献求助10
5秒前
159发布了新的文献求助10
5秒前
柔弱云朵完成签到,获得积分10
6秒前
juanjuan发布了新的文献求助10
6秒前
冷酷寒荷完成签到,获得积分10
6秒前
7秒前
xingper发布了新的文献求助10
7秒前
柳扬完成签到,获得积分10
7秒前
sherlock完成签到,获得积分10
12秒前
13秒前
13秒前
14秒前
浮光应助猴哥好样的采纳,获得20
16秒前
彪壮的忘幽完成签到,获得积分10
17秒前
复杂的冥幽完成签到,获得积分20
17秒前
18秒前
NEU_ZJH完成签到,获得积分10
19秒前
19秒前
Jasperlee完成签到 ,获得积分10
19秒前
19秒前
20秒前
21完成签到,获得积分10
20秒前
无极微光应助崔崔采纳,获得20
20秒前
樊尔风完成签到,获得积分10
21秒前
思源应助liangxiao采纳,获得10
22秒前
23秒前
钊子发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588962
求助须知:如何正确求助?哪些是违规求助? 4671741
关于积分的说明 14789385
捐赠科研通 4626869
什么是DOI,文献DOI怎么找? 2532017
邀请新用户注册赠送积分活动 1500619
关于科研通互助平台的介绍 1468373