清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Anatomy-specific Progression Classification in Chest Radiographs via Weakly Supervised Learning

射线照相术 医学 放射科 解剖 医学物理学 人工智能 计算机科学
作者
Ke Yu,Shantanu Ghosh,Zhexiong Liu,Christopher Deible,Clare B. Poynton,Kayhan Batmanghelich
出处
期刊:Radiology [Radiological Society of North America]
卷期号:6 (5) 被引量:1
标识
DOI:10.1148/ryai.230277
摘要

Purpose To develop a machine learning approach for classifying disease progression in chest radiographs using weak labels automatically derived from radiology reports. Materials and Methods In this retrospective study, a twin neural network was developed to classify anatomy-specific disease progression into four categories: improved, unchanged, worsened, and new. A two-step weakly supervised learning approach was employed, pretraining the model on 243 008 frontal chest radiographs from 63 877 patients (mean age, 51.7 years ± 17.0 [SD]; 34 813 [55%] female) included in the MIMIC-CXR database and fine-tuning it on the subset with progression labels derived from consecutive studies. Model performance was evaluated for six pathologic observations on test datasets of unseen patients from the MIMIC-CXR database. Area under the receiver operating characteristic (AUC) analysis was used to evaluate classification performance. The algorithm is also capable of generating bounding-box predictions to localize areas of new progression. Recall, precision, and mean average precision were used to evaluate the new progression localization. One-tailed paired t tests were used to assess statistical significance. Results The model outperformed most baselines in progression classification, achieving macro AUC scores of 0.72 ± 0.004 for atelectasis, 0.75 ± 0.007 for consolidation, 0.76 ± 0.017 for edema, 0.81 ± 0.006 for effusion, 0.7 ± 0.032 for pneumonia, and 0.69 ± 0.01 for pneumothorax. For new observation localization, the model achieved mean average precision scores of 0.25 ± 0.03 for atelectasis, 0.34 ± 0.03 for consolidation, 0.33 ± 0.03 for edema, and 0.31 ± 0.03 for pneumothorax. Conclusion Disease progression classification models were developed on a large chest radiograph dataset, which can be used to monitor interval changes and detect new pathologic conditions on chest radiographs. Keywords: Prognosis, Unsupervised Learning, Transfer Learning, Convolutional Neural Network (CNN), Emergency Radiology, Named Entity Recognition Supplemental material is available for this article. © RSNA, 2024 See also commentary by Alves and Venkadesh in this issue.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
纪外绣完成签到,获得积分10
9秒前
有人应助科研通管家采纳,获得30
10秒前
1分钟前
可爱的函函应助悠悠采纳,获得10
1分钟前
郜南烟发布了新的文献求助10
1分钟前
包容新蕾完成签到 ,获得积分10
1分钟前
有人应助科研通管家采纳,获得30
2分钟前
2分钟前
悠悠发布了新的文献求助10
2分钟前
悠悠完成签到,获得积分10
2分钟前
1437594843完成签到 ,获得积分10
2分钟前
边曦完成签到 ,获得积分10
3分钟前
张振宇完成签到 ,获得积分10
3分钟前
Arthur完成签到 ,获得积分10
3分钟前
研友_nxw2xL完成签到,获得积分10
4分钟前
康康XY完成签到 ,获得积分10
4分钟前
muriel完成签到,获得积分10
4分钟前
有人应助科研通管家采纳,获得30
4分钟前
有人应助科研通管家采纳,获得30
4分钟前
闪闪的谷梦完成签到 ,获得积分10
5分钟前
范白容完成签到 ,获得积分10
6分钟前
肆肆完成签到,获得积分10
7分钟前
刘刘完成签到 ,获得积分10
7分钟前
JueruiWang1258完成签到,获得积分10
7分钟前
有人应助科研通管家采纳,获得10
8分钟前
有人应助科研通管家采纳,获得10
8分钟前
有人应助科研通管家采纳,获得10
8分钟前
有人应助科研通管家采纳,获得10
8分钟前
tingyeh完成签到,获得积分10
8分钟前
甜甜玫瑰应助baolong采纳,获得10
8分钟前
丹妮完成签到 ,获得积分10
8分钟前
liuzhigang完成签到 ,获得积分10
8分钟前
有人应助科研通管家采纳,获得10
10分钟前
有人应助科研通管家采纳,获得10
10分钟前
有人应助科研通管家采纳,获得10
10分钟前
有人应助科研通管家采纳,获得10
10分钟前
有人应助科研通管家采纳,获得10
10分钟前
baolong完成签到,获得积分10
10分钟前
jeff发布了新的文献求助30
10分钟前
姚老表完成签到,获得积分10
11分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146771
求助须知:如何正确求助?哪些是违规求助? 2798063
关于积分的说明 7826678
捐赠科研通 2454589
什么是DOI,文献DOI怎么找? 1306394
科研通“疑难数据库(出版商)”最低求助积分说明 627708
版权声明 601527