Anatomy-specific Progression Classification in Chest Radiographs via Weakly Supervised Learning

射线照相术 医学 放射科 解剖 医学物理学 人工智能 计算机科学
作者
Ke Yu,Shantanu Ghosh,Zhexiong Liu,Christopher Deible,Clare B. Poynton,Kayhan Batmanghelich
出处
期刊:Radiology [Radiological Society of North America]
卷期号:6 (5) 被引量:1
标识
DOI:10.1148/ryai.230277
摘要

Purpose To develop a machine learning approach for classifying disease progression in chest radiographs using weak labels automatically derived from radiology reports. Materials and Methods In this retrospective study, a twin neural network was developed to classify anatomy-specific disease progression into four categories: improved, unchanged, worsened, and new. A two-step weakly supervised learning approach was employed, pretraining the model on 243 008 frontal chest radiographs from 63 877 patients (mean age, 51.7 years ± 17.0 [SD]; 34 813 [55%] female) included in the MIMIC-CXR database and fine-tuning it on the subset with progression labels derived from consecutive studies. Model performance was evaluated for six pathologic observations on test datasets of unseen patients from the MIMIC-CXR database. Area under the receiver operating characteristic (AUC) analysis was used to evaluate classification performance. The algorithm is also capable of generating bounding-box predictions to localize areas of new progression. Recall, precision, and mean average precision were used to evaluate the new progression localization. One-tailed paired t tests were used to assess statistical significance. Results The model outperformed most baselines in progression classification, achieving macro AUC scores of 0.72 ± 0.004 for atelectasis, 0.75 ± 0.007 for consolidation, 0.76 ± 0.017 for edema, 0.81 ± 0.006 for effusion, 0.7 ± 0.032 for pneumonia, and 0.69 ± 0.01 for pneumothorax. For new observation localization, the model achieved mean average precision scores of 0.25 ± 0.03 for atelectasis, 0.34 ± 0.03 for consolidation, 0.33 ± 0.03 for edema, and 0.31 ± 0.03 for pneumothorax. Conclusion Disease progression classification models were developed on a large chest radiograph dataset, which can be used to monitor interval changes and detect new pathologic conditions on chest radiographs. Keywords: Prognosis, Unsupervised Learning, Transfer Learning, Convolutional Neural Network (CNN), Emergency Radiology, Named Entity Recognition Supplemental material is available for this article. © RSNA, 2024 See also commentary by Alves and Venkadesh in this issue.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
WYR发布了新的文献求助20
2秒前
Narcissus完成签到,获得积分10
3秒前
邱晨凯发布了新的文献求助10
4秒前
科研通AI6应助研友_892kOL采纳,获得10
4秒前
loyal发布了新的文献求助10
4秒前
牙膏616发布了新的文献求助10
4秒前
华仔应助zj3tears采纳,获得10
7秒前
浮游应助xhd2814采纳,获得10
8秒前
老迟到的晓露完成签到,获得积分10
8秒前
哈哈哈发布了新的文献求助10
8秒前
xona完成签到,获得积分10
8秒前
9秒前
乐观紫霜发布了新的文献求助10
11秒前
13秒前
Lucas应助甜甜圈采纳,获得10
13秒前
xuexi完成签到,获得积分10
13秒前
开心果发布了新的文献求助10
13秒前
万能图书馆应助夜行采纳,获得10
14秒前
15秒前
dyy完成签到,获得积分10
15秒前
乐乐应助qqq采纳,获得10
16秒前
16秒前
bkagyin应助高挑的梦芝采纳,获得10
17秒前
17秒前
醉尘完成签到,获得积分10
17秒前
jjy发布了新的文献求助100
18秒前
充电宝应助ZHAOYUN采纳,获得10
18秒前
18秒前
xhd2814给xhd2814的求助进行了留言
19秒前
zj3tears发布了新的文献求助10
20秒前
dyy发布了新的文献求助10
20秒前
21秒前
乐观紫霜完成签到,获得积分10
24秒前
七木完成签到,获得积分10
24秒前
24秒前
24秒前
25秒前
26秒前
科研通AI6应助dyy采纳,获得20
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Le transsexualisme : étude nosographique et médico-légale (en PDF) 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5312188
求助须知:如何正确求助?哪些是违规求助? 4455976
关于积分的说明 13864983
捐赠科研通 4344392
什么是DOI,文献DOI怎么找? 2385837
邀请新用户注册赠送积分活动 1380209
关于科研通互助平台的介绍 1348565