亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Anatomy-specific Progression Classification in Chest Radiographs via Weakly Supervised Learning

射线照相术 医学 放射科 解剖 医学物理学 人工智能 计算机科学
作者
Ke Yu,Shantanu Ghosh,Zhexiong Liu,Christopher Deible,Clare B. Poynton,Kayhan Batmanghelich
出处
期刊:Radiology [Radiological Society of North America]
卷期号:6 (5) 被引量:1
标识
DOI:10.1148/ryai.230277
摘要

Purpose To develop a machine learning approach for classifying disease progression in chest radiographs using weak labels automatically derived from radiology reports. Materials and Methods In this retrospective study, a twin neural network was developed to classify anatomy-specific disease progression into four categories: improved, unchanged, worsened, and new. A two-step weakly supervised learning approach was employed, pretraining the model on 243 008 frontal chest radiographs from 63 877 patients (mean age, 51.7 years ± 17.0 [SD]; 34 813 [55%] female) included in the MIMIC-CXR database and fine-tuning it on the subset with progression labels derived from consecutive studies. Model performance was evaluated for six pathologic observations on test datasets of unseen patients from the MIMIC-CXR database. Area under the receiver operating characteristic (AUC) analysis was used to evaluate classification performance. The algorithm is also capable of generating bounding-box predictions to localize areas of new progression. Recall, precision, and mean average precision were used to evaluate the new progression localization. One-tailed paired t tests were used to assess statistical significance. Results The model outperformed most baselines in progression classification, achieving macro AUC scores of 0.72 ± 0.004 for atelectasis, 0.75 ± 0.007 for consolidation, 0.76 ± 0.017 for edema, 0.81 ± 0.006 for effusion, 0.7 ± 0.032 for pneumonia, and 0.69 ± 0.01 for pneumothorax. For new observation localization, the model achieved mean average precision scores of 0.25 ± 0.03 for atelectasis, 0.34 ± 0.03 for consolidation, 0.33 ± 0.03 for edema, and 0.31 ± 0.03 for pneumothorax. Conclusion Disease progression classification models were developed on a large chest radiograph dataset, which can be used to monitor interval changes and detect new pathologic conditions on chest radiographs. Keywords: Prognosis, Unsupervised Learning, Transfer Learning, Convolutional Neural Network (CNN), Emergency Radiology, Named Entity Recognition Supplemental material is available for this article. © RSNA, 2024 See also commentary by Alves and Venkadesh in this issue.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI2S应助卡皮巴拉采纳,获得10
2秒前
卡皮巴拉完成签到,获得积分10
7秒前
7秒前
大力的康乃馨完成签到,获得积分10
9秒前
12秒前
luxiang发布了新的文献求助10
12秒前
13秒前
14秒前
爆米花应助yo采纳,获得10
15秒前
俏皮的雁发布了新的文献求助10
17秒前
斯文败类应助海洋球采纳,获得10
18秒前
bo发布了新的文献求助10
18秒前
香蕉觅云应助露营采纳,获得10
27秒前
28秒前
corleeang完成签到 ,获得积分10
28秒前
海洋球发布了新的文献求助10
33秒前
37秒前
39秒前
40秒前
42秒前
43秒前
浮游应助海洋球采纳,获得10
45秒前
52秒前
Takahara2000完成签到,获得积分10
56秒前
不说再见发布了新的文献求助10
57秒前
俏皮的雁完成签到,获得积分10
1分钟前
bkagyin应助oikage采纳,获得10
1分钟前
灯露发布了新的文献求助10
1分钟前
龙龙完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Crisp完成签到 ,获得积分10
1分钟前
佳子发布了新的文献求助10
1分钟前
露营发布了新的文献求助10
1分钟前
CipherSage应助佳子采纳,获得10
1分钟前
灯露完成签到,获得积分10
1分钟前
1分钟前
汉堡包应助露营采纳,获得10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426299
求助须知:如何正确求助?哪些是违规求助? 4540126
关于积分的说明 14171681
捐赠科研通 4457871
什么是DOI,文献DOI怎么找? 2444698
邀请新用户注册赠送积分活动 1435666
关于科研通互助平台的介绍 1413164