Anatomy-specific Progression Classification in Chest Radiographs via Weakly Supervised Learning

射线照相术 医学 放射科 解剖 医学物理学 人工智能 计算机科学
作者
Ke Yu,Shantanu Ghosh,Zhexiong Liu,Christopher Deible,Clare B. Poynton,Kayhan Batmanghelich
出处
期刊:Radiology [Radiological Society of North America]
卷期号:6 (5) 被引量:1
标识
DOI:10.1148/ryai.230277
摘要

Purpose To develop a machine learning approach for classifying disease progression in chest radiographs using weak labels automatically derived from radiology reports. Materials and Methods In this retrospective study, a twin neural network was developed to classify anatomy-specific disease progression into four categories: improved, unchanged, worsened, and new. A two-step weakly supervised learning approach was employed, pretraining the model on 243 008 frontal chest radiographs from 63 877 patients (mean age, 51.7 years ± 17.0 [SD]; 34 813 [55%] female) included in the MIMIC-CXR database and fine-tuning it on the subset with progression labels derived from consecutive studies. Model performance was evaluated for six pathologic observations on test datasets of unseen patients from the MIMIC-CXR database. Area under the receiver operating characteristic (AUC) analysis was used to evaluate classification performance. The algorithm is also capable of generating bounding-box predictions to localize areas of new progression. Recall, precision, and mean average precision were used to evaluate the new progression localization. One-tailed paired t tests were used to assess statistical significance. Results The model outperformed most baselines in progression classification, achieving macro AUC scores of 0.72 ± 0.004 for atelectasis, 0.75 ± 0.007 for consolidation, 0.76 ± 0.017 for edema, 0.81 ± 0.006 for effusion, 0.7 ± 0.032 for pneumonia, and 0.69 ± 0.01 for pneumothorax. For new observation localization, the model achieved mean average precision scores of 0.25 ± 0.03 for atelectasis, 0.34 ± 0.03 for consolidation, 0.33 ± 0.03 for edema, and 0.31 ± 0.03 for pneumothorax. Conclusion Disease progression classification models were developed on a large chest radiograph dataset, which can be used to monitor interval changes and detect new pathologic conditions on chest radiographs. Keywords: Prognosis, Unsupervised Learning, Transfer Learning, Convolutional Neural Network (CNN), Emergency Radiology, Named Entity Recognition Supplemental material is available for this article. © RSNA, 2024 See also commentary by Alves and Venkadesh in this issue.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助大橙子采纳,获得10
1秒前
桐桐应助Bismarck采纳,获得10
5秒前
CLY完成签到,获得积分10
6秒前
7秒前
rita_sun1969完成签到,获得积分10
8秒前
研友_8K2QJZ完成签到,获得积分10
8秒前
蝴蝶完成签到 ,获得积分10
9秒前
ARIA完成签到 ,获得积分10
9秒前
大橙子发布了新的文献求助10
12秒前
Bismarck完成签到,获得积分20
13秒前
13秒前
爱笑子默完成签到,获得积分10
14秒前
14秒前
一点完成签到,获得积分10
16秒前
研友_VZG7GZ应助大葱鸭采纳,获得10
16秒前
DezhaoWang完成签到,获得积分10
17秒前
知犯何逆发布了新的文献求助10
18秒前
原本完成签到,获得积分10
18秒前
Bismarck发布了新的文献求助10
19秒前
苗条丹南完成签到 ,获得积分10
21秒前
yu完成签到 ,获得积分10
24秒前
skyleon完成签到,获得积分10
24秒前
无心的天真完成签到 ,获得积分10
25秒前
Engen完成签到,获得积分20
25秒前
26秒前
学术小垃圾完成签到,获得积分10
26秒前
dreamwalk完成签到 ,获得积分10
26秒前
黄淮科研小白龙完成签到 ,获得积分10
27秒前
齐嫒琳完成签到,获得积分10
29秒前
研友_Lav0Qn完成签到,获得积分10
29秒前
大橙子发布了新的文献求助10
30秒前
GreenT完成签到,获得积分10
30秒前
鳄鱼队长完成签到,获得积分10
31秒前
Zengyuan完成签到,获得积分10
31秒前
研友_Lav0Qn发布了新的文献求助10
32秒前
perry4rosa完成签到,获得积分0
32秒前
量子星尘发布了新的文献求助10
33秒前
LIFE2020完成签到 ,获得积分10
33秒前
科研人完成签到,获得积分10
34秒前
飞云完成签到 ,获得积分10
35秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038157
求助须知:如何正确求助?哪些是违规求助? 3575869
关于积分的说明 11373842
捐赠科研通 3305650
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022