Synergistic Regulation of Hydrogen Bonds and Electrocrystallization for Enhanced Aqueous Zinc Batteries

材料科学 电解质 水溶液 剥离(纤维) 法拉第效率 电化学 电镀(地质) 过电位 电池(电) 无机化学 枝晶(数学) 化学工程 电极 冶金 有机化学 化学 物理化学 工程类 几何学 地球物理学 数学 量子力学 物理 地质学 复合材料 功率(物理)
作者
Yi‐Feng Wang,Lina Song,Sheng Wang,Jiayi Wu,Wen‐Bin Tu,Ji‐Jing Xu
出处
期刊:Advanced Energy Materials [Wiley]
标识
DOI:10.1002/aenm.202401896
摘要

Abstract Aqueous zinc ion batteries are promising candidates for large scale energy‐storage due to their combination of inherent security and abundant reserves. The Zn metal undergoes continuous plating and stripping during electrochemical cycling, accompanied by parasitic side reactions and dendrite growth, which severely impedes the commercialization of batteries. Here, an innovative strategy is introduced in electrolyte engineering, dedicated to enhancing the stability at the Zn/electrolyte interface. Theoretical calculations and in situ experimental analyses collectively demonstrate that methyl sulfonyl methane (MSM) additives are beneficial in jointly modulating the hydrogen bonding network and the Zn 2+ solvation structure, which in turn restricts H 2 O activity at the interface. Concurrently, the preferential adsorption of MSM on the Zn surface facilitates the controlled growth of compact zinc layers while suppressing dendritic and parasitic reactions. By modulating the electrolyte and managing the electrode interface, the Zn||Zn symmetric battery can be reversibly cycled over 150 days at a current density of 2 mA cm −2 , and the assembled Zn||Cu half‐batteries show impressive cycling stability over 3100 cycles. This study provides an in‐depth comprehension of the Zn 2+ plating/stripping behavior, and the development of sophisticated electrolyte systems offers practical guidance for constructing high‐performance zinc‐based batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
羊笨笨完成签到 ,获得积分10
刚刚
1秒前
光亮芷天完成签到,获得积分10
1秒前
1秒前
2秒前
粗犷的问夏完成签到,获得积分10
3秒前
知行合一完成签到 ,获得积分10
4秒前
4秒前
5秒前
李爱国应助晨曦采纳,获得10
6秒前
0128lun发布了新的文献求助10
6秒前
phd发布了新的文献求助10
7秒前
君无名完成签到 ,获得积分10
7秒前
经年发布了新的文献求助10
7秒前
QXR完成签到,获得积分10
8秒前
豆dou完成签到,获得积分10
8秒前
Dddd发布了新的文献求助10
8秒前
HCl完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
11秒前
11秒前
Hollen完成签到 ,获得积分10
12秒前
慕青应助学术蠕虫采纳,获得10
13秒前
13秒前
叶子发布了新的文献求助10
14秒前
orangel完成签到,获得积分10
15秒前
半壶月色半边天完成签到 ,获得积分10
16秒前
tmpstlml发布了新的文献求助10
16秒前
17秒前
17秒前
不安饼干完成签到 ,获得积分10
19秒前
活泼的飞鸟完成签到,获得积分10
19秒前
20秒前
xuyun发布了新的文献求助10
20秒前
20秒前
zzcres完成签到,获得积分10
22秒前
eeeee完成签到 ,获得积分10
22秒前
乐观德地完成签到,获得积分10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808