A tailored database combining reference compound-derived metabolite, metabolism platform and chemical characteristic of Chinese herb followed by activity screening: Application to Magnoliae Officinalis Cortex

化学 官房 草本植物 代谢物 皮质(解剖学) 传统医学 数据库 药理学 草药 生物化学 神经科学 心理学 计算机科学 医学
作者
Zhen-Zhen Xue,Yudong Shang,Yang Lan,Tao Li,Bin Yang
出处
期刊:Journal of Pharmaceutical Analysis [Elsevier BV]
卷期号:: 101066-101066
标识
DOI:10.1016/j.jpha.2024.101066
摘要

A strategy combining a tailored database and high-throughput activity screening that discover bioactive metabolites derived from Magnoliae Officinalis Cortex (MOC) was developed and implemented to rapidly profile and discover bioactive metabolites in vivo derived from traditional Chinese medicine (TCM). The strategy possessed four characteristics: 1) The tailored database consisted of metabolites derived from big data-originated reference compound, metabolites predicted in silico, and MOC chemical profile-based pseudomolecular ions. 2) When profiling MOC-derived metabolites in vivo, attentions were paid not only on prototypes of MOC compounds and metabolites directly derived from MOC compounds, as reported by most papers, but also on isomerized metabolites and the degradation products of MOC compounds as well as their derived metabolites. 3) Metabolite traceability was performed, especially to distinguish isomeric prototypes-derived metabolites, and prototypes of MOC compounds as well as phase I metabolites derived from other MOC compounds. 4) Molecular docking was utilized for high-throughput activity screening and molecular dynamic simulation as well as zebrafish model were used for verification. Using this strategy, 134 metabolites were swiftly characterized after the oral administration of MOC to rats, and several metabolites were reported for the first time. Furthermore, 17 potential active metabolites were discovered by targeting the motilin, dopamine D2, and the serotonin type 4 (5-HT4) receptors, and their bioactivities were verified using molecular dynamic simulation and a zebrafish constipation model. This study extends the application of mass spectrometry (MS) to rapidly profile TCM-derived metabolites in vivo, which will help pharmacologists rapidly discover potent metabolites from a complex matrix.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研助手6应助akamanuo采纳,获得10
刚刚
雾月发布了新的文献求助10
刚刚
NikiJu完成签到,获得积分10
1秒前
iuv发布了新的文献求助10
1秒前
胖虎不胖完成签到,获得积分10
1秒前
优雅的雁凡完成签到,获得积分10
2秒前
19991027完成签到 ,获得积分10
2秒前
虚幻采枫发布了新的文献求助10
3秒前
3秒前
3秒前
景绝义发布了新的文献求助10
3秒前
4秒前
4秒前
科研通AI5应助bfsss采纳,获得10
4秒前
5秒前
5秒前
xxggyy007发布了新的文献求助10
6秒前
7秒前
little佳发布了新的文献求助10
7秒前
阿冰发布了新的文献求助10
7秒前
思源应助尹明水采纳,获得10
7秒前
7秒前
t通应助研友_LN3BMn采纳,获得10
8秒前
咕噜仔发布了新的文献求助10
8秒前
科研通AI5应助雾月采纳,获得10
9秒前
9秒前
9秒前
无情麦片完成签到 ,获得积分10
10秒前
2:38am发布了新的文献求助10
10秒前
负责冰凡发布了新的文献求助10
10秒前
iuv完成签到,获得积分10
11秒前
kkjl驳回了852应助
12秒前
革微桂发布了新的文献求助10
13秒前
14秒前
15秒前
15秒前
15秒前
爆米花应助咕噜仔采纳,获得10
15秒前
16秒前
科目三应助繁荣的语蝶采纳,获得10
16秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3774735
求助须知:如何正确求助?哪些是违规求助? 3320512
关于积分的说明 10200742
捐赠科研通 3035259
什么是DOI,文献DOI怎么找? 1665428
邀请新用户注册赠送积分活动 796939
科研通“疑难数据库(出版商)”最低求助积分说明 757666